

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

The complete characterization of the minimum size supertail in a subspace partition

LINEAR

Innlications

Esmeralda L. Năstase^a, Papa A. Sissokho^{b,*}

^a Mathematics Department, Xavier University, Cincinnati, OH 45207, USA
 ^b Mathematics Department, Illinois State University, Normal, IL 61790, USA

ARTICLE INFO

Article history: Received 5 May 2018 Accepted 6 September 2018 Available online 11 September 2018 Submitted by R. Brualdi

MSC: primary 51E20 secondary 51E23

Keywords: Subspace partition Vector space partition Supertail of a subspace partition

ABSTRACT

Let q be a prime power and let n be a positive integer. Let V = V(n,q) denote the vector space of dimension n over \mathbb{F}_q . A subspace partition \mathcal{P} of V is a collection of subspaces of V with the property that each nonzero vector is in exactly one of the subspaces in \mathcal{P} . Suppose that d_1, \ldots, d_k are the different dimensions, in increasing order, that occur in the subspace partition \mathcal{P} . For any integer s, with $2 \leq s \leq k$, the d_s -supertail \mathcal{S} of \mathcal{P} is the collection of all subspaces $X \in \mathcal{P}$ such that dim $X < d_s$. It was shown that $|\mathcal{S}| > \sigma_a(d_s, d_{s-1})$, where $\sigma_q(d_s, d_{s-1})$ denotes the minimum number of subspaces over all subspace partitions of $V(d_s, q)$ in which the largest subspace has dimension d_{s-1} . Moreover, it was shown that if $d_s > 2d_{s-1}$ and equality holds in the previous bound on $|\mathcal{S}|$, then the union of the subspaces in \mathcal{S} forms a subspace. This characterization was also conjectured to hold if $d_s < 2d_{s-1}$. This conjecture was recently proved in certain cases. In this paper, we use a much simpler approach to completely settle this conjecture.

@ 2018 Elsevier Inc. All rights reserved.

* Corresponding author.

 $\label{eq:https://doi.org/10.1016/j.laa.2018.09.007} 0024-3795 @ 2018 Elsevier Inc. All rights reserved.$

E-mail addresses: nastasee@xavier.edu (E.L. Năstase), psissok@ilstu.edu (P.A. Sissokho).

1. Introduction

Let q be a prime power and let n be a positive integer. Let V = V(n,q) denote the vector space of dimension n over \mathbb{F}_q . A subspace of dimension t is referred to as a t-subspace. A subspace partition, or vector space partition, \mathcal{P} of V, is a collection of subspaces of V with the property that each nonzero vector is in exactly one of the subspaces in \mathcal{P} . A well-known example of a subspace partition is a spread, which is a subspace partition in which all subspaces have the same dimension. Pioneering work on spreads has been done by several researchers, e.g., André [1] and Segre [16]. Research work on subspace partitions has also been carried since the early 1900s, e.g., see Heden [7] for a survey. A special feature of subspace partitions is that they naturally occur in various fields such as finite geometry, coding theory, and design theory, e.g., see [1,2,11,12,16] and the references therein.

One main line of research in the area of subspace partitions is the *Classification Problem*, which we shall define after introducing some notation. Given a subspace partition \mathcal{P} , of V, the *type* of \mathcal{P} is the multiset that consists of dim X for all subspaces $X \in \mathcal{P}$. The Classification Problem consists of finding necessary and/or sufficient conditions for a given multiset of integers that is realizable as the type of a subspace partition of V. Although there are many results related to the Classification Problem, e.g., see [3–5,8,13], the main question is still wide open.

Before we describe the main contribution of this paper (Theorem 5), we introduce two necessary conditions and a few more definitions. Let \mathcal{P} be a subspace partition of V(n,q) that contains m_{d_i} subspaces of dimension d_i for $1 \leq i \leq k$. In other words, the type of \mathcal{P} is the multiset that consists of m_{d_i} copies of d_i for $1 \leq i \leq k$. We denote such a multiset by $d_1^{m_{d_1}} \dots d_k^{m_{d_k}}$. The following necessary conditions are trivial to derive:

$$\sum_{i=1}^{k} m_{d_i}(q^{d_i} - 1) = q^n - 1 \qquad (packing \ condition) \qquad (1)$$

$$\begin{cases} n \ge d_i + d_j & \text{if } m_{d_i} + m_{d_j} \ge 2 \text{ and } i \ne j; \\ n \ge 2d_i & \text{if } m_{d_i} \ge 2. \end{cases} \qquad (dimension \ condition) \qquad (2)$$

Let k, d_i , and m_{d_i} be as defined, and let s be an integer such that $2 \leq s \leq k$. We define the d_s -supertail of \mathcal{P} to be the set of all subspaces $X \in \mathcal{P}$ such that dim $X < d_s$. For any integers d and t such that $1 \leq t \leq d$, we also define $\sigma_q(d, t)$ to be the minimum number of subspaces over all subspace partitions of V(d, q) in which the largest subspace has dimension t. It is easy to see that if $t \mid d$, then $\sigma_q(d, t) = (q^d - 1)/(q^t - 1)$, which is the number of subspaces in a t-spread of V(d, q), i.e., a spread whose subspaces have dimension t. In fact, the exact value of $\sigma_q(d, t)$ is given by the following theorem (see André [1] and Beutelspacher [2] for $d \pmod{t} \equiv 0$, and see [9,14] for $d \pmod{t} \neq 0$).

Theorem 1. Let d, k, t, and r be integers such that $0 \le r < t$, $k \ge 1$, and d = kt + r. Then Download English Version:

https://daneshyari.com/en/article/9500053

Download Persian Version:

https://daneshyari.com/article/9500053

Daneshyari.com