The complete characterization of the minimum size supertail in a subspace partition

Esmeralda L. Năstase ${ }^{\text {a }}$, Papa A. Sissokho ${ }^{\text {b,* }}$
${ }^{a}$ Mathematics Department, Xavier University, Cincinnati, OH 45207, USA
${ }^{\text {b }}$ Mathematics Department, Illinois State University, Normal, IL 61790, USA

A R T I C L E I N F O

Article history:

Received 5 May 2018
Accepted 6 September 2018
Available online 11 September 2018
Submitted by R. Brualdi

MSC:

primary 51E20
secondary 51E23
Keywords:
Subspace partition
Vector space partition
Supertail of a subspace partition

Abstract

Let q be a prime power and let n be a positive integer. Let $V=V(n, q)$ denote the vector space of dimension n over \mathbb{F}_{q}. A subspace partition \mathcal{P} of V is a collection of subspaces of V with the property that each nonzero vector is in exactly one of the subspaces in \mathcal{P}. Suppose that d_{1}, \ldots, d_{k} are the different dimensions, in increasing order, that occur in the subspace partition \mathcal{P}. For any integer s, with $2 \leq s \leq k$, the d_{s}-supertail \mathcal{S} of \mathcal{P} is the collection of all subspaces $X \in \mathcal{P}$ such that $\operatorname{dim} X<d_{s}$. It was shown that $|\mathcal{S}| \geq \sigma_{q}\left(d_{s}, d_{s-1}\right)$, where $\sigma_{q}\left(d_{s}, d_{s-1}\right)$ denotes the minimum number of subspaces over all subspace partitions of $V\left(d_{s}, q\right)$ in which the largest subspace has dimension d_{s-1}. Moreover, it was shown that if $d_{s} \geq 2 d_{s-1}$ and equality holds in the previous bound on $|\mathcal{S}|$, then the union of the subspaces in \mathcal{S} forms a subspace. This characterization was also conjectured to hold if $d_{s}<2 d_{s-1}$. This conjecture was recently proved in certain cases. In this paper, we use a much simpler approach to completely settle this conjecture.

© 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let q be a prime power and let n be a positive integer. Let $V=V(n, q)$ denote the vector space of dimension n over \mathbb{F}_{q}. A subspace of dimension t is referred to as a t-subspace. A subspace partition, or vector space partition, \mathcal{P} of V, is a collection of subspaces of V with the property that each nonzero vector is in exactly one of the subspaces in \mathcal{P}. A well-known example of a subspace partition is a spread, which is a subspace partition in which all subspaces have the same dimension. Pioneering work on spreads has been done by several researchers, e.g., André [1] and Segre [16]. Research work on subspace partitions has also been carried since the early 1900s, e.g., see Heden [7] for a survey. A special feature of subspace partitions is that they naturally occur in various fields such as finite geometry, coding theory, and design theory, e.g., see [1,2,11,12,16] and the references therein.

One main line of research in the area of subspace partitions is the Classification Problem, which we shall define after introducing some notation. Given a subspace partition \mathcal{P}, of V, the type of \mathcal{P} is the multiset that consists of $\operatorname{dim} X$ for all subspaces $X \in \mathcal{P}$. The Classification Problem consists of finding necessary and/or sufficient conditions for a given multiset of integers that is realizable as the type of a subspace partition of V. Although there are many results related to the Classification Problem, e.g., see [3-5,8,13], the main question is still wide open.

Before we describe the main contribution of this paper (Theorem 5), we introduce two necessary conditions and a few more definitions. Let \mathcal{P} be a subspace partition of $V(n, q)$ that contains $m_{d_{i}}$ subspaces of dimension d_{i} for $1 \leq i \leq k$. In other words, the type of \mathcal{P} is the multiset that consists of $m_{d_{i}}$ copies of d_{i} for $1 \leq i \leq k$. We denote such a multiset by $d_{1}^{m_{d_{1}}} \ldots d_{k}^{m_{d_{k}}}$. The following necessary conditions are trivial to derive:

$$
\begin{gather*}
\sum_{i=1}^{k} m_{d_{i}}\left(q^{d_{i}}-1\right)=q^{n}-1 \tag{1}\\
\begin{cases}n \geq d_{i}+d_{j} & \text { if } m_{d_{i}}+m_{d_{j}} \geq 2 \text { and } i \neq j ; \\
n \geq 2 d_{i} & \text { if } m_{d_{i}} \geq 2 .\end{cases} \tag{2}
\end{gather*}
$$

Let k, d_{i}, and $m_{d_{i}}$ be as defined, and let s be an integer such that $2 \leq s \leq k$. We define the d_{s}-supertail of \mathcal{P} to be the set of all subspaces $X \in \mathcal{P}$ such that $\operatorname{dim} X<d_{s}$. For any integers d and t such that $1 \leq t \leq d$, we also define $\sigma_{q}(d, t)$ to be the minimum number of subspaces over all subspace partitions of $V(d, q)$ in which the largest subspace has dimension t. It is easy to see that if $t \mid d$, then $\sigma_{q}(d, t)=\left(q^{d}-1\right) /\left(q^{t}-1\right)$, which is the number of subspaces in a t-spread of $V(d, q)$, i.e., a spread whose subspaces have dimension t. In fact, the exact value of $\sigma_{q}(d, t)$ is given by the following theorem (see André [1] and Beutelspacher [2] for $d(\bmod t) \equiv 0$, and see [9,14] for $d(\bmod t) \not \equiv 0)$.

Theorem 1. Let d, k, t, and r be integers such that $0 \leq r<t, k \geq 1$, and $d=k t+r$. Then

https://daneshyari.com/en/article/9500053

Download Persian Version:
https://daneshyari.com/article/9500053

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: nastasee@xavier.edu (E.L. Năstase), psissok@ilstu.edu (P.A. Sissokho).

