

Available online at www.sciencedirect.com

Ann. I. H. Poincaré – AN 22 (2005) 283–302

www.elsevier.com/locate/anihpc

The space $BV(S^2, S^1)$: minimal connection and optimal lifting

Radu Ignat ^a*,*^b

^a *École normale supérieure, 45, rue D'Ulm, 75230 Paris cedex 05, France* ^b *Laboratoire J.-L. Lions, Université P. et M. Curie, BC 187, 4, pl. Jussieu, 75252 Paris cedex 05, France*

Received 27 May 2004; accepted 15 July 2004

Available online 24 February 2005

Abstract

We show that topological singularities of maps in $BV(S^2, S^1)$ can be detected by its distributional Jacobian. As an application, we construct an optimal lifting and we compute its total variation.

2005 Elsevier SAS. All rights reserved.

Résumé

On montre que le jacobien d'une fonction *u* ∈ $BV(S^2, S^1)$ permet de localiser les singularités topologiques de *u*. On applique ce résultat à la construction d'un relèvement optimal et on calcule sa variation totale. 2005 Elsevier SAS. All rights reserved.

MSC: primary 26B30; secondary 49Q20, 58D15, 58E12

Keywords: Functions of bounded variation; Minimal connection; Lifting

1. Introduction

Let $u \in BV(S^2, S^1)$, i.e. $u = (u_1, u_2) \in L^1(S^2, \mathbb{R}^2)$, $|u(x)| = 1$ for a.e. $x \in S^2$ and the derivative of u (in the sense of the distributions) is a finite 2×2 -matrix Radon measure

$$
\int_{S^2} |Du| = \sup \left\{ \int_{S^2} \sum_{k=1}^2 u_k \, \text{div} \, \zeta_k \, \text{d} \mathcal{H}^2 \colon \, \zeta_k \in C^1(S^2, \mathbb{R}^2), \, \sum_{k=1}^2 |\zeta_k(x)|^2 \leq 1, \, \forall x \in S^2 \right\} < \infty,
$$

where the norm in \mathbb{R}^2 is the Euclidean norm. Observe that the total variation of *Du* is independent of the choice of the orthonormal frame (x, y) on S^2 ; a frame (x, y) is always taken such that (x, y, e) is direct, where *e* is the outward normal to the sphere *S*2.

E-mail addresses: Radu.Ignat@ens.fr, ignat@ann.jussieu.fr (R. Ignat).

 $0294-1449/$ \$ – see front matter \odot 2005 Elsevier SAS. All rights reserved. doi:10.1016/j.anihpc.2004.07.003

We begin with the notion of minimal connection between point singularities of *u*. The concept of a minimal connection associated to a function from \mathbb{R}^3 into S^2 was originally introduced by Brezis, Coron and Lieb [3]. Following the ideas in [3] and [6], Brezis, Mironescu and Ponce [4] studied the topological singularities of functions $g \in W^{1,1}(S^2, S^1)$. They show that the distributional Jacobian of *g* describes the location and the topological charge of the singular set of *g*. More precisely, let $T(g) \in \mathcal{D}'(S^2, \mathbb{R})$ be defined as

$$
T(g) = 2 \det(\nabla g) = -(g \wedge g_x)_y + (g \wedge g_y)_x;
$$

then there exist two sequences of points (p_k) , (n_k) in S^2 such that

$$
\sum_{k} |p_k - n_k| < \infty \quad \text{and} \quad T(g) = 2\pi \sum_{k} (\delta_{p_k} - \delta_{n_k}).
$$

Our aim is to extend these notions for functions $u \in BV(S^2, S^1)$. In this case, the difficulty of the analysis of the singular set arises from the existence of more than one type of singularity: besides the point singularities carrying a degree, the jump singularities of *u* should be taken into account.

We start by introducing some notation. Write the finite Radon 2×2 -matrix measure *Du* as

$$
Du = D^a u + D^c u + D^j u,
$$

where $D^a u$, $D^c u$ and $D^j u$ are the absolutely continuous part, the Cantor part and the jump part of Du (see e.g. [1]). We recall that $D^{j}u$ can be written as

$$
D^{j}u = (u^{+} - u^{-}) \otimes \nu_{u} \mathcal{H}^{1} \subset S(u),
$$

where $S(u)$ denotes the set of jump points of *u*; $S(u)$ is a countably \mathcal{H}^1 -rectifiable set on S^2 oriented by the Borel map $v_u : S(u) \to S^1$. The Borel functions u^+ , $u^- : S(u) \to S^1$ are the traces of *u* on the jump set $S(u)$ with respect to the orientation v_μ . Throughout the paper we identify *u* by its precise representative that is defined \mathcal{H}^1 -a.e. in $S^2 \setminus S(u)$.

We now introduce the distribution $T(u) \in \mathcal{D}'(S^2, \mathbb{R})$ as

$$
\left\langle T(u),\zeta\right\rangle = \int\limits_{S^2} \nabla^{\perp}\zeta \cdot \left(u \wedge (D^a u + D^c u)\right) + \int\limits_{S(u)} \rho(u^+, u^-) \nu_u \cdot \nabla^{\perp}\zeta \, d\mathcal{H}^1, \quad \forall \zeta \in C^1(S^2, \mathbb{R}).\tag{1}
$$

Here, $\nabla^{\perp} \zeta = (\zeta_v, -\zeta_x)$,

$$
\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \wedge \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} = (u \wedge a, u \wedge b) = (u_1a_2 - u_2a_1, u_1b_2 - u_2b_1),
$$

where $a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ *a*2) and $b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ *b*2). The function $\rho(\cdot, \cdot): S^1 \times S^1 \to [-\pi, \pi]$ is the signed geodesic distance on S^1 defined as

$$
\rho(\omega_1, \omega_2) = \begin{cases} \text{Arg}(\frac{\omega_1}{\omega_2}) & \text{if } \frac{\omega_1}{\omega_2} \neq -1, \\ \text{Arg}(\omega_1) - \text{Arg}(\omega_2) & \text{if } \frac{\omega_1}{\omega_2} = -1, \end{cases} \forall \omega_1, \omega_2 \in S^1,
$$

where Arg $(\omega) \in (-\pi, \pi]$ stands for the argument of the unit complex number $\omega \in S^1$. $T(u)$ represents the distributional determinant of the absolutely continuous part and the Cantor part of *Du* which is adjusted on *S(u)* by the tangential derivative of $\rho(u^+, u^-)$. The second term in the RHS of (1) is motivated by the study of $BV(S^1, S^1)$ functions (see [9]): we defined there a similar quantity that represents a pseudo-degree for $BV(S^1, S^1)$ functions.

Remark 1. (i) The integrand in (1) is computed pointwise in any orthonormal frame *(x, y)* and the corresponding quantity is frame-invariant.

Download English Version:

<https://daneshyari.com/en/article/9500143>

Download Persian Version:

<https://daneshyari.com/article/9500143>

[Daneshyari.com](https://daneshyari.com/)