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Abstract

Multiresolution triangulation meshes are widely used in computer graphics for representing three-dimensional
(3-d) shapes. We propose to use these tools to represent 2-d piecewise smooth functions such as grayscale images,
because triangles have potential to more efficiently approximate the discontinuities between the smooth pieces than
other standard tools like wavelets. We show thatnormal mesh subdivisionis an efficient triangulation, thanks to
its localadaptivityto the discontinuities. Indeed, we prove that, within a certain function class, the normal mesh
representation has an optimal asymptotic error decay rate as the number of terms in the representation grows.
This function class is the so-calledhorizon classcomprising constant regions separated by smooth discontinuities,
where the line of discontinuity isC2 continuous. This optimal decay rate is possible because normal meshes auto-
matically generate a polyline (piecewise linear) approximation of each discontinuity, unlike the blocky piecewise
constant approximation of tensor product wavelets. In this way, the proposed nonlinear multiscale normal mesh de-
composition is an anisotropic representation of the 2-d function. The same idea of anisotropic representations lies
at the basis of decompositions such as wedgelet and curvelet transforms, but the proposed normal mesh approach
has a unique construction.
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1. Introduction: images with long smooth edges

This paper concerns the representation and approximation of piecewise smooth, two-dimensional
(2-d) functions, which consist of smooth regions delineated by step discontinuities along smooth one-
dimensional (1-d) contours, which we calledges. Many different types of real-world data can be modeled
as piecewise smooth. As an important example, a piecewise smooth function is a quite accurate model
for a grayscaleimage, which represents the light intensity of a black-and-white visual scene. While we
will use images as our central, running example in this paper, other examples abound in statistics and
differential equations for a broad spectrum of applications.

By approximation, we mean approximating a piecewise smooth function with a finite-dimensional
representation. Immediate applications of approximation results include compression and noise removal
(denoising).

For images and many other kinds of data, an approximation is typically defined on a discrete set of
points on some grid. For example, digital images are typically acquired by sampling the light intensity
at discrete points on a square grid of pixels (currently using a CCD array), and so image representations
and processing algorithms typically operate on this square grid. The square pixel grid is nearly always
assumed to be fixed, with the dependent variable of the image the pixel intensity. While the acquisition
and processing of image data on a square grid of pixels is simple, it turns out to be very inefficient for
representing many important image features, including theedges.

Edges are the dominating features in piecewise smooth 2-d functions. Edges contain two types of
information:wherethe edge is located, i.e., its location and geometry, andwhat is the step value, i.e.,
the height of the discontinuity. In 2-d, geometry information plays a crucial role, much more than in
1-d. In 1-d piecewise smooth functions, discontinuities occur at isolated points, and these can be easily
captured in a wavelet transform. In 2-d, edge singularities lie along 1-d contours, which are much harder
to capture.

The time–scale analysis of the wavelet representation provides a powerful tool for approximating a
1-d functionf . Thanks to the local support of the basis functions, under mild conditions, a nonlinear
wavelet approximationfn containing then largest terms of the wavelet expansion off performs as well
on a piecewise smoothf as on a smoothf [7,8,13,19,20]. Indeed, theL2 approximation error decays
rapidly with increasingn:∥∥f − f 1-d wavelet

n

∥∥ = O
(
n−ν

)
. (1)

In this equation,ν stands for

ν = min(p̃, α),

with p̃ the number of (dual) vanishing moments of the wavelet analysis andα the Lipschitz regularity
of the signal at its nonsingular points. Wavelets provide a very efficient representation of 1-d piecewise
smooth signals primarily because in 1-d the geometry information consists of merely a few isolated
points.
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