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Abstract

In this paper, we study the existence, uniqueness and asymptotic stability of travelling wave-
fronts of the following equation:

ut (x, t)=D[u(x + 1, t)+ u(x − 1, t)− 2u(x, t)] − du(x, t)+ b(u(x, t − r)),

wherex ∈ R, t >0, D, d >0, r�0, b ∈ C1(R) andb(0)=dK−b(K)=0 for someK >0 under
monostable assumption. We show that there exists a minimal wave speedc∗ >0, such that for
each c > c∗ the equation has exactly one travelling wavefrontU(x + ct) (up to a translation)
satisfyingU(−∞)= 0, U(+∞)=K and lim sup�→−∞ U(�)e−�1(c)� <+ ∞, where� = �1(c)

is the smallest solution to the equationc� − D[e� + e−� − 2] + d − b′(0)e−�cr = 0. Moreover,
the travelling wavefront is strictly monotone and asymptotically stable with phase shift in
the sense that if an initial data� ∈ C(R × [−r,0], [0,K]) satisfies lim infx→+∞ �(x,0)>0
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and limx→−∞ maxs∈[−r,0]|�(x, s)e−�1(c)x − �0e
�1(c)cs | = 0 for some�0 ∈ (0,+∞), then the

solutionu(x, t) of the corresponding initial value problem satisfies limt→+∞ supR|u(·, t)/U(·+
ct + �0)− 1| = 0 for some�0 = �0(U,�) ∈ R.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Travelling wavefront solutions play an important role in describing the long-term be-
haviour of solutions to initial value problems in reaction and diffusion (both continuous
and discrete) equations. Such solutions also have their own practical background, such
as, transition between different states of a physical system, propagation of patterns, and
domain invasion of species in population biology. When the nonlinear reaction term is
of monostable type, that is, considering the R-D equation

wt(x, t) = Dwxx(x, t)+ f (w(x, t)), x ∈ R, t�0, (1.1)

with f (w) satisfying

(A) f (0) = f (k) = 0 for somek > 0; andf (w) > 0 for w ∈ (0, k),

it has been known from long time ago thatcmin = 2
√
Df ′(0) > 0 is the minimal wave

speed in the sense that (i) for everyc > cmin there exists a travelling wavefront of the
form w(x, t) = u(x + ct) with u(s) increasing andu(−∞) = 0, u(∞) = k; (ii) the
wavefront is unique up to translation; (iii) forc < cmin, there is no such monotone
wavefront with speedc. Moreover, the wavefront cannot be stable with respect to
general initial functions, it can, however, be stable in respect to some smaller class of
initial functions (e.g., initial functions with compact support).

For a spatially discrete analogue of (1.1), one may consider the following lattice
differential equations

u′
n(t) = D[un+1(t)+ un−1(t)− 2un(t)] + f (un(t)), n ∈ Z, t > 0. (1.2)

System (1.2) can either be considered as a discretization of (1.1), or be derived di-
rectly from population models over patchy environments (see, e.g.,[3,12,18]). Indeed,
as mentioned in Bell and Cosner [3] and Keener [12], in many situations, one usu-
ally derives a discrete version like (1.2) first, and then, by taking limit, arrives at a
continuous version like (1.1). When the nonlinear term in (1.2) is ofbistable type, the
study on travelling wavefronts of such lattice differential equations have been exten-
sive and intensive, and has resulted in many interesting and significant results, some
of which, have revealed some essential difference between a discrete model and its
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