Singular perturbations for third-order nonlinear multi-point boundary value problem ${ }^{2}$

Zengji Du ${ }^{\text {a }, *}$, Weigao Ge $^{\text {a }}$, Mingru Zhou ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Beijing Institute of Technology, Beijing 100081, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, Xuzhou Normal University, Xuzhou, Jiangsu, 221116, PR China

Received 9 July 2004; revised 6 January 2005
Available online 2 March 2005

Abstract

This paper is devoted to study the following third-order multi-point singularly perturbed boundary value problem $$
\begin{aligned} & \varepsilon x^{\prime \prime \prime}(t)+f\left(t, x(t), x^{\prime}(t), x^{\prime \prime}(t), \varepsilon\right)=0, \quad 0 \leqslant t \leqslant 1,0<\varepsilon \ll 1, \\ & x(0, \varepsilon)=0, \\ & a x^{\prime}(0, \varepsilon)-b x^{\prime \prime}(0, \varepsilon)+\sum_{i=1}^{n-2} \alpha_{i} x\left(\xi_{i}, \varepsilon\right)=A, \\ & c x^{\prime}(1, \varepsilon)+d x^{\prime \prime}(1, \varepsilon)+\sum_{i=1}^{n-2} \beta_{i} x\left(\eta_{i}, \varepsilon\right)=B, \end{aligned}
$$

where $a, b, c, d \geqslant 0, A, B \in R, a+b>0, c+d>0, \alpha_{i} \leqslant 0, \beta_{i} \leqslant 0, i=1,2, \ldots, n-2,0<\xi_{1}<\xi_{2}$ $<\cdots<\xi_{n-2}<1$, and $0<\eta_{1}<\eta_{2}<\cdots<\eta_{n-2}<1$. The existence, uniqueness and asymptotic estimates of solutions of the boundary value problem are give by using priori estimates, differential inequalities technique and Leray-Schauder degree theory.
© 2005 Elsevier Inc. All rights reserved.
Keywords: Singular perturbations; Nonlinear boundary value problem; Existence and uniqueness; Asymptotic estimates; Upper and lower solutions; Leray-Schauder degree

[^0]
1. Introduction

For the past 20 years an extensive research has been made on the existence and asymptotic estimates of singularly perturbed boundary value problem for third-order nonlinear differential equation, for instance, to see $[5,9,12-15]$ and therein. Many techniques arose in the studies of this kind of problem. For example, Howes [9] has considered problems of type

$$
\varepsilon^{2} y^{\prime \prime \prime}=f(y) y^{\prime}+g(x, y), y(a)=A, y(b)=B, y^{\prime}(b)=C
$$

and discussed the existence and asymptotic estimates of the solutions by the method of descent. Zhao [15] has discussed a more general class of third-order singularly perturbed boundary value problems of the form

$$
\varepsilon y^{\prime \prime \prime}=f\left(x, y, y^{\prime}, \varepsilon\right), y^{\prime}(0)=0, y(1)=0, y^{\prime}(1)=0
$$

and discussed the existence of solution and obtained asymptotic estimates using the theory of differential inequalities. Feckan [5] has studied high-order problems and his approach was based on the nonlinear analysis involving fixed-point theory, LeraySchauder theory, etc. Valarmathi and Ramanujam [13] has considered singularly perturbed third-order ordinary differential equations of convection-diffusion type

$$
\begin{aligned}
& -\varepsilon y^{\prime \prime \prime}(x)+a(x) y^{\prime \prime}(x)+b(x) y(x)+c(x) y(x)=f(x), \\
& y(0)=p, y^{\prime}(0)=q, y^{\prime}(1)=r
\end{aligned}
$$

by using of an asymptotic numerical method.
In this paper, we discuss the existence, uniqueness and asymptotic estimates of solutions of the following third-order multi-point singularly perturbed boundary value problem (for short, BVP)

$$
\begin{align*}
& \varepsilon x^{\prime \prime \prime}(t)+ f\left(t, x(t), x^{\prime}(t), x^{\prime \prime}(t), \varepsilon\right)=0, \quad 0 \leqslant t \leqslant 1,0<\varepsilon \ll 1, \tag{1.1}\\
& x(0, \varepsilon)=0, \\
& a x^{\prime}(0, \varepsilon)-b x^{\prime \prime}(0, \varepsilon)+\sum_{i=1}^{n-2} \alpha_{i} x\left(\xi_{i}, \varepsilon\right)=A, \tag{1.2}\\
& c x^{\prime}(1, \varepsilon)+d x^{\prime \prime}(1, \varepsilon)+\sum_{i=1}^{n-2} \beta_{i} x\left(\eta_{i}, \varepsilon\right)=B,
\end{align*}
$$

where $a, b, c, d \geqslant 0, A, B \in R, a+b>0, c+d>0, \alpha_{i} \leqslant 0, \beta_{i} \leqslant 0, i=1,2, \ldots, n-2$, $0<\xi_{1}<\xi_{2}<\cdots<\xi_{n-2}<1$, and $0<\eta_{1}<\eta_{2}<\cdots<\eta_{n-2}<1$.

In order to study BVP (1.1), (1.2), we first discuss the following nonlinear multi-point boundary value problem

$$
\begin{equation*}
x^{\prime \prime \prime}(t)+f\left(t, x(t), x^{\prime}(t), x^{\prime \prime}(t)\right)=0, \quad 0 \leqslant t \leqslant 1, \tag{1.3}
\end{equation*}
$$

https://daneshyari.com/en/article/9501580

Download Persian Version:

https://daneshyari.com/article/9501580

Daneshyari.com

[^0]: ${ }^{2}$ Sponsored by the National Natural Science Foundation of China (No. 10371006).

 * Corresponding author.

 E-mail addresses: duzengji@163.com (Z. Du), gew@bit.edu.cn (W. Ge), zhoumr@xznu.edu.cn (M. Zhou).

