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Abstract

This paper is a continuation of our previous work “Rigorous results in selection of steady
needle crystals, J. Differential Equations 197 (2004) 349–426”. It concerns analyticity of a
classical steadily translating needle crystal. It is proved that any classical solution to the needle
crystal problem with sufficiently small but nonzero surface tension, if its slope deviation is
close to some Ivantsov zero-surface-tension solution and if its curvature satisfies some algebraic
decay conditions at∞, must belong to the analytic function spaceA0 defined in�1 and chosen
in the previous study mentioned above. The analyticity result implies that there can be no
classical steady needle crystal solution when anisotropy is zero.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and notations

Dendritic crystal growth has long been a subject of continued investigations. Reviews
of the subject from various perspectives can be found in [13,20]. The simplest example
of dendrite growth is the growth of a needle crystal in solidification from a pure
undercooled melt. For zero surface tension, Ivantsov [11] found an infinite continuous
family of parabolic steadily growing crystals without side branching (called a needle
crystal). These Ivantsov solutions do not produce a unique steady dendrite velocity
U and the radius of curvature of the tipa, as experimental evidence suggests, but
rather determine the product of the tip radius of curvature and the steady dendrite
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velocity. To be specific, Ivantsov’s solution produces only a single relation between the
dimensionless undercooling� = cp(Tm−T∞)

L
and the Peclet numberP = Ua

2D . (In these
formulas,cp is the heat capacity,L is the latent heat,Tm is the melting temperature,
T∞ is the specific temperature at infinity andD is the thermal diffusivity.) The reason
is that the Ivantsov problem is missing a length scale. The only quantities in the theory
with dimensions of length are the tip radiusa and the diffusion lengthl = 2D/U ; thus,
one dimensionless relationship betweenP = a/l and � is all that can be expected.

This dimensional degeneracy of the Ivantsov problem suggests that capillarity is an
essential physical ingredient for the dendritic selection mechanism. A new length scale
associated with the surface tensiond is chosen to bed0 = dcp

aL
Tm. When surface

tension is taken into account, there is enough dimensional information to determine
dendrite velocity and tip curvature in terms of undercooling. However, this need not
imply that a solution exists in this case. Kruskal and Segur[16] studied the third-order
differential equations arising from one of the phenomenological models. They proved
that in the limit of zero surface tension, these equations from the geometric model
of growing dendrites do not have any physically acceptable solutions when crystalline
anisotropy is ignored even though the equations admit solutions when surface tension
is zero. This extraordinary situation happens due to the effect of exponential terms
in an asymptotic expansion for small surface tension. When crystalline anisotropy is
included in the geometric model, a discrete set of solution is found to exist. Based
on different models (including Nash–Glicksman equation [24]), these conclusions were
supported by the numerical work of Kessler and Levine [14] and by formal analytical
calculations of Pelce and Pomeau [27], Ben Amar and Pomeau [5], Barbeiri et al. [1]
and Tanveer [29].

There have been several models for dendritic growth and solidification problems in
the literature. Besides work based on the geometric model and the Nash–Glicksman
model mentioned above, there are also numerous works based on the phase field model
and the sharp interface model (see [6] and references cited therein). In this paper, our
analysis is based on a one-sided model as in [1,17,34]. In this one-sided model, the
heat diffusion in the solid phase is neglected. The dimensionless temperatureT satisfies
the heat diffusion equation in the liquid region. A far-field condition on temperature is
specified as well in accordance with the experimental condition. On the free boundary,
one specifies two interfacial boundary conditions: one is the Gibbs–Thompson boundary
condition that accounts for lowering of the melting temperature by curvature, while the
other follows from a balance of heat at the interface. Considering a conformal mapz(�)
that maps the upper-half�-plane into the physical region (liquid region) in thez plane.
The real�-axis corresponds to the unknown interface. It is clear that determination of
the functionz(�) yields the unknown interface. We decomposez(�) into

z(�) = − i
2

�2 + � + F(�),

wherezI (�) = − i
2 �2 + � is the Ivantsov solution on� plane. Following[34], a steady

symmetric needle crystal is equivalent to finding functionF analytic in the upper-
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