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Decay of solutions of the wave equation with
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Abstract

We study the problem of decay rate for the solutions of the initial–boundary value problem
to the wave equation, governed by localized nonlinear dissipation and without any assumption
on the dynamics (i.e., the control geometric condition is not satisfied). We treat separately
the autonomous and the non-autonomous cases. Providing regular initial data, without any
assumption on an observation subdomain, we prove that the energy decays at last, as fast as
the logarithm of time. Our result is a generalization of Lebeau (in: A. Boutet de Monvel, V.
Marchenko (Eds.), Algebraic and Geometric Methods in Mathematical Physics, Kluwer Academic
Publishers, Dordrecht, the Netherlands, 1996, pp. 73) result in the autonomous case and Nakao
(Adv. Math. Sci. Appl. 7 (1) (1997) 317) work in the non-autonomous case. In order to prove
that result we use a new method based on the Fourier–Bross–Iaglintzer (FBI) transform.
© 2005 Elsevier Inc. All rights reserved.

Keywords:Decay rate; Initial–boundary value problem; Wave equation; FBI transform

1. Introduction

The aim of this paper is to give decay estimates for the wave equation with a
nonlinear damping term and without any assumption on the dynamics. Let� be a
smooth n-dimensional Riemannian compact manifold with boundary� = ��. We
start an investigation of the asymptotic behavior of the solution of the following
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wave equation:

�2t u − �u + b(t, x)g(�t u) = 0 in Q = � × R+, (1.1)

with the Dirichlet boundary condition:

u = 0 on � = � × R+, (1.2)

whereb(t, x) is given by

b(t, x) = (1+ t)�a(x) := �(t)a(x), −1< ��0, (1.3)

� is the Laplace–Beltrami operator on�, g : R −→ R is a non-decreasing continuous
function with g(0) = 0, sg(s)�0 anda ∈ L∞(�) is assumed to be a positive function
a(x)�0 for all x ∈ �. Let � ⊂⊂ � be a given arbitrary non-empty subdomain such
that a(x)�a0 > 0 in � ⊂⊂ �. We are interested in asemi-dynamical systemassociated
with (1.1) and (1.2). Let us take the product-spaceX = H 1

0 (�) ⊕ L2(�), where the
norm inH 1

0 (�) is defined by

‖v‖H1
0 (�) = ‖∇v‖L2(�) , v ∈ H 1

0 (�). (1.4)

The norm inX is chosen as follows:

‖(v,w)‖2X = E(v,w) = ‖v‖2
H1
0 (�)

+ ‖w‖2
L2(�)

, for (v,w) ∈ X. (1.5)

It is known that (1.1) and (1.2) define an evolution inX in a natural way: any initial
stateu = (u0, u1) ∈ X will transform in time into the state(u(t), �t u(t)), with the
initial conditions

u(0, x) = u0, �t u(0, x) = u1. (1.6)

Thus, from the very beginning we have to impose certain restrictions ong in order
to guarantee the global existence, uniqueness and continuous dependence on the initial
data. We will assume thatg(s) satisfies the following conditions:

(i) There existsC1, C2 > 0 and r�1 such that for|s| �1, we have

C1 |s|r � |g(s)| �C2 |s| 1r . (1.7)

(ii) There existsC′
1, C

′
2 > 0 such that for|s| > 1 we have

C′
1 |s|k � |g(s)| �C′

2 |s|p ,
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