Energy estimate and fundamental solution for degenerate hyperbolic Cauchy problems

Alessia Ascanelli ${ }^{\text {a }}$, Massimo Cicognani ${ }^{\text {b, }, \text {, * }}$
${ }^{\text {a }}$ Dipartimento di Matematica, Università di Ferrara, Via Machiavelli 35, 44100 Ferrara, Italy ${ }^{\mathrm{b}}$ Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40127 Bologna, Italy
${ }^{\text {c }}$ Facoltà di Ingegneria II, Via Genova 181, 47023 Cesena, Italy

Received 29 June 2004; revised 13 September 2004
Available online 30 November 2004

Abstract

The aim of this paper is to give an uniform approach to different kinds of degenerate hyperbolic Cauchy problems. We prove that a weakly hyperbolic equation, satisfying an intermediate condition between effective hyperbolicity and the C^{∞} Levi condition, and a strictly hyperbolic equation with non-regular coefficients with respect to the time variable can be reduced to firstorder systems of the same type. For such a kind of systems, we prove an energy estimate in Sobolev spaces (with a loss of derivatives) which gives the well-posedness of the Cauchy problem in C^{∞}. In the strictly hyperbolic case, we also construct the fundamental solution and we describe the propagation of the space singularities of the solution which is influenced by the non-regularity of the coefficients with respect to the time variable.

(C) 2004 Elsevier Inc. All rights reserved.

Keywords: Degenerate hyperbolic equations; Energy estimates; Propagation of singularities

[^0]
1. Introduction

Let us consider the Cauchy problem

$$
\left\{\begin{array}{l}
\left.P\left(t, x, D_{t} D_{x}\right) u(t, x)=0, \quad(t, x) \in\right]-T, T\left[\times \mathbf{R}^{n},\right. \tag{1.1}\\
u(0, x)=u_{0}(x), \\
\partial_{t} u(0, x)=u_{1}(x)
\end{array}\right.
$$

for the second-order operator

$$
\left\{\begin{array}{l}
P=D_{t}^{2}-a\left(t, x, D_{x}\right)+b\left(t, x, D_{x}\right)+c(t, x) \tag{1.2}\\
a(t, x, \xi)=\sum_{i, j=1}^{n} a_{i j}(t, x) \xi_{i} \xi_{j} \\
b(t, x, \xi)=\sum_{j=1}^{n} b_{j}(t, x) \xi_{j}
\end{array}\right.
$$

$D=\frac{1}{\sqrt{-1}} \partial$, under the hyperbolicity condition

$$
\begin{equation*}
a(t, x, \xi) \geqslant 0, \quad t \in]-T, T\left[, x, \xi \in \mathbf{R}^{n} .\right. \tag{1.3}
\end{equation*}
$$

Concerning the regularity of the coefficients, we assume $a_{i j}(t, \cdot) \in \mathcal{B}^{\infty}\left(\mathbf{R}^{n}\right), t \in$ $]-T, T\left[, b_{j}, c \in \mathcal{B}^{0}(]-T, T\left[; \mathcal{B}^{\infty}\left(\mathbf{R}^{n}\right)\right), \mathcal{B}^{k}(\Omega ; Y)\right.$ the space of all functions from Ω to Y which are bounded together with all their derivatives up to the order k. The regularity of the $a_{i j}$'s with respect to the time variable t will be specified from case to case.

We say that the Cauchy problem (1.1) is well-posed in the space X of functions in \mathbf{R}^{n} if for every $u_{0}, u_{1} \in X$ there is a unique solution $u \in C^{1}(]-T, T[; X)$.

It is well known that in the strictly hyperbolic case

$$
\begin{equation*}
\left.a(t, x, \xi) \geqslant a_{0}|\xi|^{2}, \quad a_{0}>0, t \in\right]-T, T\left[, x, \xi \in \mathbf{R}^{n}\right. \tag{1.4}
\end{equation*}
$$

if the coefficients $a_{i j}$ are Lipschitz continuous in the variable t, then the problem (1.1) is well-posed in the Sobolev spaces $H^{-\infty}\left(\mathbf{R}^{n}\right)=\bigcup_{s} H^{s}\left(\mathbf{R}^{n}\right)$ and $H^{\infty}\left(\mathbf{R}^{n}\right)=$ $\bigcap_{s} H^{s}\left(\mathbf{R}^{n}\right)$. The C^{∞} well-posedness follows by the existence of domains of dependence.

This may fail to be true either for a weakly hyperbolic equation, that is when $a(t, x, \xi)=0$ at some point $(t, x, \xi), \xi \neq 0$, even if $a_{i j} \in C^{\infty}$, or for a strictly hyperbolic equation with non-Lipschitz coefficients.

In the weakly hyperbolic case, the C^{∞} well-posedness holds for an effectively hyperbolic operator and it is stable under any perturbation of the lower-order terms $b\left(t, x, D_{x}\right), c(t, x)$. Otherwise, the first-order term $b(t, x, \xi)$ has to satisfy Levi

https://daneshyari.com/en/article/9501634

Download Persian Version:
https://daneshyari.com/article/9501634

Daneshyari.com

[^0]: ${ }^{*}$ Corresponding author. Faculty of Engineering II, University of Bologna, Via Genova, 181, 47023 Cesena, FC, Italy.

 E-mail addresses: alessia@dm.unife.it (A. Ascanelli), cicognan@dm.unibo.it (M. Cicognani).

