

Available online at www.sciencedirect.com



J. Differential Equations 217 (2005) 305-340

Journal of Differential Equations

www.elsevier.com/locate/jde

## Energy estimate and fundamental solution for degenerate hyperbolic Cauchy problems

Alessia Ascanelli<sup>a</sup>, Massimo Cicognani<sup>b, c, \*</sup>

<sup>a</sup>Dipartimento di Matematica, Università di Ferrara, Via Machiavelli 35, 44100 Ferrara, Italy <sup>b</sup>Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40127 Bologna, Italy <sup>c</sup>Facoltà di Ingegneria II, Via Genova 181, 47023 Cesena, Italy

Received 29 June 2004; revised 13 September 2004

Available online 30 November 2004

## Abstract

The aim of this paper is to give an uniform approach to different kinds of degenerate hyperbolic Cauchy problems. We prove that a weakly hyperbolic equation, satisfying an intermediate condition between effective hyperbolicity and the  $C^{\infty}$  Levi condition, and a strictly hyperbolic equation with non-regular coefficients with respect to the time variable can be reduced to first-order systems of the same type. For such a kind of systems, we prove an energy estimate in Sobolev spaces (with a loss of derivatives) which gives the well-posedness of the Cauchy problem in  $C^{\infty}$ . In the strictly hyperbolic case, we also construct the fundamental solution and we describe the propagation of the space singularities of the solution which is influenced by the non-regularity of the coefficients with respect to the time variable. @ 2004 Elsevier Inc. All rights reserved.

Keywords: Degenerate hyperbolic equations; Energy estimates; Propagation of singularities

0022-0396/ $\ensuremath{\$}$  - see front matter @ 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jde.2004.10.010

<sup>\*</sup> Corresponding author. Faculty of Engineering II, University of Bologna, Via Genova, 181, 47023 Cesena, FC, Italy.

E-mail addresses: alessia@dm.unife.it (A. Ascanelli), cicognan@dm.unibo.it (M. Cicognani).

## 1. Introduction

Let us consider the Cauchy problem

$$\begin{cases}
P(t, x, D_t D_x)u(t, x) = 0, & (t, x) \in ] - T, T[\times \mathbf{R}^n, \\
u(0, x) = u_0(x), \\
\partial_t u(0, x) = u_1(x)
\end{cases}$$
(1.1)

for the second-order operator

$$\begin{cases}
P = D_t^2 - a(t, x, D_x) + b(t, x, D_x) + c(t, x), \\
a(t, x, \xi) = \sum_{i,j=1}^n a_{ij}(t, x)\xi_i\xi_j, \\
b(t, x, \xi) = \sum_{j=1}^n b_j(t, x)\xi_j,
\end{cases}$$
(1.2)

 $D = \frac{1}{\sqrt{-1}}\partial$ , under the hyperbolicity condition

$$a(t, x, \xi) \ge 0, \quad t \in ] -T, T[, x, \xi \in \mathbf{R}^n.$$

$$(1.3)$$

Concerning the regularity of the coefficients, we assume  $a_{ij}(t, \cdot) \in \mathcal{B}^{\infty}(\mathbb{R}^n)$ ,  $t \in ] - T, T[, b_j, c \in \mathcal{B}^0(] - T, T[; \mathcal{B}^{\infty}(\mathbb{R}^n))$ ,  $\mathcal{B}^k(\Omega; Y)$  the space of all functions from  $\Omega$  to Y which are bounded together with all their derivatives up to the order k. The regularity of the  $a_{ij}$ 's with respect to the time variable t will be specified from case to case.

We say that the Cauchy problem (1.1) is well-posed in the space X of functions in  $\mathbf{R}^n$  if for every  $u_0, u_1 \in X$  there is a unique solution  $u \in C^1(] - T, T[; X)$ .

It is well known that in the strictly hyperbolic case

$$a(t, x, \xi) \ge a_0 |\xi|^2, \quad a_0 > 0, \ t \in ] -T, T[, x, \xi \in \mathbf{R}^n$$
 (1.4)

if the coefficients  $a_{ij}$  are Lipschitz continuous in the variable t, then the problem (1.1) is well-posed in the Sobolev spaces  $H^{-\infty}(\mathbf{R}^n) = \bigcup_s H^s(\mathbf{R}^n)$  and  $H^{\infty}(\mathbf{R}^n) = \bigcap_s H^s(\mathbf{R}^n)$ . The  $C^{\infty}$  well-posedness follows by the existence of domains of dependence.

This may fail to be true either for a weakly hyperbolic equation, that is when  $a(t, x, \xi) = 0$  at some point  $(t, x, \xi), \xi \neq 0$ , even if  $a_{ij} \in C^{\infty}$ , or for a strictly hyperbolic equation with non-Lipschitz coefficients.

In the weakly hyperbolic case, the  $C^{\infty}$  well-posedness holds for an effectively hyperbolic operator and it is stable under any perturbation of the lower-order terms  $b(t, x, D_x), c(t, x)$ . Otherwise, the first-order term  $b(t, x, \xi)$  has to satisfy Levi

306

Download English Version:

## https://daneshyari.com/en/article/9501634

Download Persian Version:

https://daneshyari.com/article/9501634

Daneshyari.com