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Abstract

A planar central configuration of theN-body problem gives rise to a solution where each
particle moves on a specific Keplerian orbit while the totality of the particles move on a
homothety motion. If the Keplerian orbit is elliptic then the solution is an equilibrium in
pulsating coordinates so we call this solution anelliptic relative equilibrium.

The totality of such solutions forms a four-dimensional symplectic subspace and we give a
symplectic coordinate system which is adapted to this subspace and its symplectic complement.
In our coordinate system, the linear variational equations of such a solution decouple into three
subsystems. One subsystem simply gives the motion of the center of mass, another is Kepler’s
problem and the third determines the nontrivial characteristic multipliers.

Using these coordinates we study the linear stability of the elliptic relative equilibrium defined
by the equilateral triangular central configuration of the three-body problem. We reproduce the
analytic studies of G. Roberts. We also study the linear stability of the four- and five-body
problem where three or four bodies of unit mass are at the vertices of a equilateral triangle or
square and the remaining body is at the center with arbitrary mass�.
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1. Introduction

Let q1, . . . , qN ∈ R2 be the position vectors,p1, . . . , pN ∈ R2 the momentum vectors
of N particles of massesm1, . . . , mN in an inertial (sidereal) frame. Let the distance
between thejth andkth particles be denoted bydjk =‖ qj − qk ‖. In these coordinates
the Hamiltonian, H, and theself-potential, S, for theN-body problem are

H =
N∑
j=1

‖ pj ‖2

2mj

− S(q1, . . . , qN), S =
∑

1� j<k�N

mjmk

djk
(1)

and the equations of motion are

q̇j = pj/mj , ṗj = �S
�qj

, j = 1, . . . , N. (2)

A central configurationis a solutionq1 = a1, . . . , qN = aN of the algebraic equations

−�mjqj = �S
�qj

(q1, . . . , qN) (3)

for some constant�. One shows that� = S(a)/2I (a) > 0 whereI = 1
2

∑
mj‖aj‖2 is

the moment of inertia.
Only the planarN-body problem is considered here and so sometimes we will think

of vectors inR2 as complex numbers, i.e. we will identifyR2 andC in the usual way.
A classical and elementary result[10,12,15,20]is

Proposition 1.1. Let a1, . . . , aN , ai ∈ C be a central configuration with constant�.
Let (z(t), Z(t)) ∈ C2 be a solution of the Kepler problem(central force problem) with
Hamiltonian

HK = 1

2
‖Z‖2− �/‖z‖, z, Z ∈ R2. (4)

Then

qi = z(t)ai, pi = miZ(t)ai, i = 1, . . . , N

is a solution of the N-body problem.
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