# Self-similar solutions of a semilinear parabolic equation with inverse-square potential ${ }^{\text {dTh }}$ 

Guillermo Reyes ${ }^{\mathrm{a}, *}$, Alberto Tesei ${ }^{\text {b }}$<br>${ }^{a}$ Escuela Politécnica Superior, Universidad Carlos III de Madrid, Ave. de la Universidad, 30, 28911 Madrid, Spain<br>${ }^{\mathrm{b}}$ Dipartimento di Matematica "G. Castelnuovo". Università di Roma, "La Sapienza", P.le A. Moro 5, I-00185 Roma, Italy

Received 2 August 2004; revised 23 June 2005
Available online 19 September 2005


#### Abstract

We investigate existence, nonexistence and asymptotical behaviour-both at the origin and at infinity-of radial self-similar solutions to a semilinear parabolic equation with inverse-square potential. These solutions are relevant to prove nonuniqueness of the Cauchy problem for the parabolic equation in certain Lebesgue spaces, generalizing the result proved by Haraux and Weissler [Non-uniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31 (1982) 167-189] for the case of vanishing potential. © 2005 Elsevier Inc. All rights reserved.


## 1. Introduction

In this paper we investigate existence, nonexistence and asymptotical behaviour of nonnegative solutions to the ordinary differential equation

$$
\begin{equation*}
\left(P f^{\prime}\right)^{\prime}+\left(\frac{c}{\xi^{2}}+\frac{1}{q-2}\right) P f+P|f|^{q-2} f=0 \tag{1.1}
\end{equation*}
$$

[^0]in $\mathbb{R}_{+}$, where
\[

$$
\begin{equation*}
P(\xi):=\xi^{n-1} e^{\frac{\xi^{2}}{4}} \tag{1.2}
\end{equation*}
$$

\]

$n \geqslant 3, q>2$ and the coefficient $c$ satisfies the inequality $0<c<c_{0}, c_{0}:=\frac{(n-2)}{4}{ }^{2}$ denoting the best constant in the Hardy inequality.
(a) Eq. (1.1) arises in the analysis of radial self-similar solutions to the semilinear parabolic equation with inverse-square potential

$$
\begin{equation*}
v_{t}=\Delta v+\frac{c}{r^{2}} v+|v|^{q-2} v \tag{1.3}
\end{equation*}
$$

in $S:=\mathbb{R}^{n} \times \mathbb{R}_{+}(n \geqslant 3)$, where $r \equiv|x|$ and $c, q$ are as above. Such solutions are of the form

$$
v(x, t)=t^{-\frac{1}{q-2}} f(r / \sqrt{t})
$$

Upon substitution into (1.3), it is easily seen that the profile $f$ satisfies Eq. (1.1) in $\mathbb{R}_{+}$, where $\xi:=r / \sqrt{t}$ and ${ }^{\prime} \equiv d / d \xi$.

In the following an important role is played by the roots:

$$
\begin{equation*}
\lambda=\lambda_{ \pm}:=2-n \pm 2 \sqrt{c_{0}-c} \tag{1.4}
\end{equation*}
$$

of the equation

$$
\begin{equation*}
\lambda^{2}+2(n-2) \lambda+4 c=0 \tag{1.5}
\end{equation*}
$$

(e.g., see Theorem 1.6 below; observe that $\lambda_{-}<2-n<\lambda_{+}<0$ ). These roots naturally appear when we perform in Eq. (1.1) the change of unknown $f(\xi)=\xi^{\lambda / 2} g(\xi)$; in fact, the choice $\lambda=\lambda_{ \pm}$gives the following equation for $g$ :

$$
\begin{equation*}
\left(H g^{\prime}\right)^{\prime}-\sigma H g+K|g|^{q-2} g=0 \tag{1.6}
\end{equation*}
$$

Here

$$
\begin{gather*}
H(\xi):=\xi^{\lambda+n-1} e^{\frac{\xi^{2}}{4}}=\xi^{\lambda} P(\xi),  \tag{1.7}\\
K(\xi):=\xi^{\frac{\lambda q}{2}+n-1} e^{\frac{\xi^{2}}{4}}=\xi^{\frac{\lambda}{2}(q-2)} H(\xi), \tag{1.8}
\end{gather*}
$$

# https://daneshyari.com/en/article/9501690 

Download Persian Version:

## https://daneshyari.com/article/9501690

## Daneshyari.com


[^0]:    动 Work partially supported through RTN Contract HPRN-CT-2002-00274.

    * Corresponding author.

    E-mail addresses: guillermo.reyes@uc3m.es, greyes@math.uc3m.es (G. Reyes), tesei@mat.uniromal.it (A. Tesei).

