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Abstract

This paper deals with a reaction–diffusion system with coupled nonlinear inner sources and a
nonlinear boundary flux. Blow-up rates are determined for four different blow-up situations. The so-
called characteristic algebraic system is introduced to get a very simple and clear description for the
desired blow-up rate estimates. It is pointed out that one cannot directly use super and sub-solutions
to establish blow-up rate estimates, since they do not share the same blow-up time in general.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the following reaction–diffusion equations coupled via both
nonlinear sources and a nonlinear boundary flux:
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


ut = uxx + ul11vl12, vt = vxx + ul21vl22,

(x, t) ∈ (0,1) × (0, T ),

ux(1, t) = (up11vp12)(1, t), vx(1, t) = (up21vp22)(1, t), t ∈ (0, T ),

ux(0, t) = 0, vx(0, t) = 0, t ∈ (0, T ),

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ (0,1),

(1.1)

wherelij , pij � 0 (i, j = 1,2); u0(x) andv0(x) are smooth functions satisfying the com-
patible conditions. We deal with completely coupled cases only: it is required that at least
one ofl12l21, l12p21, p12l21 andp12p21 is positive.

Global existence and nonexistence of positive solutions of (1.1) can be found in [26,33].
It was proved that the solutions of (1.1) blow up in finite time if and only if at least one of
the following conditions holds:l11 > 1; l22 > 1; p11 > 1; p22 > 1; p12p21 > (1−p11)(1−
p22); l12l21 > (1− l11)(1− l22); l12p21 > (1− l11)(1− p22); p12l21 > (1− p11)(1− l22).

More special cases of (1.1) were studied by many authors. The heat equations coupled
via a nonlinear boundary flux{

ut = ∆u, vt = ∆v in Ω × (0, T ),
∂u
∂η

= up11vp12, ∂v
∂η

= up21vp22 on ∂Ω × (0, T ),
(1.2)

were studied by Rossi [25], Pederson and Lin [21]. The blow-up rates of radial solutions
of (1.2) with large initial data andΩ = BR were known as follows:

c � sup
BR

u(·, t)(T − t)α̃1 � C, c � sup
BR

v(·, t)(T − t)β̃1 � C,

α̃1 = p12 + 1− p22

2[p12p21 − (1− p11)(1− p22)] , β̃1 = p21 + 1− p11

2[p12p21 − (1− p11)(1− p22)] .

The case for more general domains was considered by Chen [1], and the case withpii = 0
(i = 1,2) of (1.2) was studied by Deng [3]. Scalar cases of (1.2) were well studied
in [4,11–14].

The blow-up rates of radial solutions to the homogeneous Dirichlet problem of coupled
reaction–diffusion equations

ut = ∆u + ul11vl12, vt = ∆v + ul21vl22 in BR × (0, T ) (1.3)

were obtained by Zheng [35] and Wang [28] as

c � sup
BR

u(·, t)(T − t)α̃2 � C, c � sup
BR

v(·, t)(T − t)β̃2 � C,

α̃2 = l12 + 1− l22

l12l21 − (1− l11)(1− l22)
, β̃2 = l21 + 1− l11

l12l21 − (1− l11)(1− l22)
.

The studies for scalar cases of (1.3) can be found in [6,8–10]. A special case of (1.3) with
lii = 0 (i = 1,2) was discussed by Wang [30].

Fu and Guo [7], Wang [31] considered blow-up rates and sets for system (1.1) with
lii = pii = 0 (i = 1,2). The other cases for (1.1) withl21 = p12 = lii = pii = 0 (i = 1,2)
andl21 = lii = pii = 0 (i = 1,2) were studied by Wang also [29,32].
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