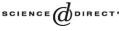


Available online at www.sciencedirect.com



J. Math. Anal. Appl. 312 (2005) 33-43

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

The asymptotic behaviour of the unique solution for the singular Lane–Emden–Fowler equation $\stackrel{\approx}{\sim}$

Zhijun Zhang

Department of Mathematics and Information Science, Yantai University, Yantai 264005, People's Republic of China

Received 2 January 2005

Available online 8 April 2005

Submitted by A. Cellina

Abstract

By Karamata regular variation theory and constructing comparison functions, we show the exact asymptotic behaviour of the unique classical solution $u \in C^2(\Omega) \cap C(\overline{\Omega})$ near the boundary to a singular Dirichlet problem $-\Delta u = k(x)g(u), u > 0, x \in \Omega, u|_{\partial\Omega} = 0$, where Ω is a bounded domain with smooth boundary in \mathbb{R}^N ; $g \in C^1((0, \infty), (0, \infty))$, $\lim_{t\to 0^+} \frac{g(\xi t)}{g(t)} = \xi^{-\gamma}$, for each $\xi > 0$, for some $\gamma > 0$; and $k \in C^{\alpha}_{loc}(\Omega)$ for some $\alpha \in (0, 1)$, is nonnegative on Ω , which is also singular near the boundary.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Semilinear elliptic equations; Dirichlet problem; Singularity; Karamata regular variation theory; Unique solution; Existence; Exact asymptotic behaviour

1. Introduction and the main results

Let Ω be a bounded domain with smooth boundary in \mathbb{R}^N ($N \ge 1$). Consider the following singular Dirichlet problem for the Lane–Emden–Fowler equation:

$$-\Delta u = k(x)g(u), \quad u > 0, \ x \in \Omega, \ u|_{\partial\Omega} = 0, \tag{1.1}$$

^{*} This work is supported in part by National Natural Science Foundation of People's Republic of China. *E-mail addresses:* chinazjzhang@yahoo.com.cn, zhangzj@ytu.edu.cn.

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2005.03.023

where g and k satisfy

(g₁) $g \in C^1((0,\infty), (0,\infty)), g'(s) \leq 0$ for all s > 0, $\lim_{s \to 0^+} g(s) = +\infty$; (k₁) $k \in C^{\alpha}_{loc}(\Omega)$ for some $\alpha \in (0, 1)$, is nonnegative and nontrivial on Ω .

The problem arises in the study of non-Newtonian fluids, boundary layer phenomena for viscous fluids, chemical heterogeneous catalysts, as well as in the theory of heat conduction in electrically materials (see [10,13,17,25,29]).

The main feature of this paper is the presence of the singular term g(u) which is regular varying at zero of index $-\gamma$ with $\gamma > 0$, and the weight k(x) which is also singular near the boundary, the both of them include a large class of singular functions.

The problem was discussed and extended to the more general problems in number of works; see, for instance, [2,9–17,19–21,23,28–33]. For $k \equiv 1$ on Ω , and g satisfying (g₁), Crandall et al. [10, Theorems 2.2 and 2.7] showed that problem (1.1) has a unique solution $u \in C^{2+\alpha}(\Omega) \cap C(\overline{\Omega})$. Moreover, there exist positive constants C_1 and C_2 such that

(I) $C_1 p(d(x)) \leq u(x) \leq C_2 p(d(x))$ near $\partial \Omega$, where $d(x) = \text{dist}(x, \partial \Omega)$,

where $p \in C[0, a] \cap C^2(0, a]$ is the local solution to the problem

$$-p''(s) = g(p(s)), \quad p(s) > 0, \ 0 < s < a, \ p(0) = 0.$$
(1.2)

In particular, for $g(u) = u^{-\gamma}$, $\gamma > 1$, *u* satisfies

(I₁)
$$C_1[d(x)]^{2/(1+\gamma)} \leq u(x) \leq C_2[d(x)]^{2/(1+\gamma)}$$
 near $\partial \Omega$

Lazer and McKenna [21], by construction the global subsolution and supersolution, showed that (I₁) continues to hold on $\overline{\Omega}$. Then $u \in H_0^1(\Omega)$ if and only if $\gamma < 3$. This is a basic character to problem (1.1). Moreover, in the Remarks and generalizations, there is the following additional information:

(I₂) if, instead of $k(x) \equiv 1$ on Ω , assume $0 < c_1 \leq k(x)\varphi_1^{\sigma}(x) \leq c_2$ for all $x \in \overline{\Omega}$, where c_1 and c_2 are constants, $0 < \sigma < 2$, and φ_1 is the eigenfunction corresponding to the first eigenvalue of problem $-\Delta u = \lambda u$ in Ω , and $u|_{\partial\Omega} = 0$, then for $\gamma > 1$, there exist positive constants C_1 and C_2 (C_1 small and C_2 large) such that u satisfying

$$C_1[\varphi_1(x)]^{2/(1+\gamma)} \leqslant u(x) \leqslant C_2[\varphi_1(x)]^{(2-\sigma)/(1+\gamma)}, \quad \forall x \in \bar{\Omega}.$$

Most recently, in [32], we showed the existence and global optimal estimate of unique solution to problem (1.1) under $\int_{1}^{\infty} g(s) ds < \infty$. Moreover, Ghergu and Rădulescu [14] showed that if g satisfies (g₁) and

- (g₂) there exist positive constants C_0 , η_0 and $\gamma \in (0, 1)$ such that $g(s) \leq C_0 s^{-\gamma}$, $\forall s \in (0, \eta_0)$;
- (g₃) there exist $\theta > 0$ and $t_0 \ge 1$ such that $g(\xi t) \ge \xi^{-\theta} g(t)$ for all $\xi \in (0, 1)$ and $0 < t \le t_0 \xi$;

Download English Version:

https://daneshyari.com/en/article/9502713

Download Persian Version:

https://daneshyari.com/article/9502713

Daneshyari.com