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Abstract

In this paper, the existence and multiplicity results of solutions are obtained for the second order
two-point boundary value problem−u′′(t) = f (t, u(t)) for all t ∈ [0,1] subject tou(0) = u′(1) = 0,
wheref is continuous. The monotone operator theory and critical point theory are employed to
discuss this problem, respectively. In argument, quadratic root operator and its properties play an
important role.
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1. Introduction

In this paper, we consider the existence and multiplicity results of the solutions to the
following second order two-point boundary value problem (BVP):{−u′′(t) = f (t, u(t)), t ∈ [0,1],

u(0) = u′(1) = 0,
(1.1)

wheref : [0,1] × R
1 → R

1 is continuous.
Owing to the importance of second order differential equations in physics, the existence

and multiplicity of the solutions to the following problem{−u′′(t) = f (t, u(t)), t ∈ [0,1],
u(0) = u(1) = 0

has been studied by many authors, see [1,3–10]. They all obtained the existence results
of positive solutions under thatf is either superlinear or sublinear inu by employing
the cone expansion or compression fixed point theorem. Meanwhile, great importance has
been attached to BVP (1.1). But in our knowledge, few papers have discussed the existence
results of solutions, especially, infinitely many solutions for BVP (1.1). In this paper, by
using the strongly monotone operator principle and the critical point theory, respectively, to
discuss BVP (1.1), we establish some conditions forf which are able to guarantee that this
problem has a unique solution, at least one nonzero solution, and infinitely many solutions.
In argument,K1/2, the quadratic root operator of a positive linear compact operatorK , and
its properties play an important role.

2. Preliminary

In this section, we give some lemmas that are important to our discussion. Let
C[0,1] denote the usual real Banach space with the norm‖u‖C = maxt∈[0,1] |u(t)| for
all u ∈ C[0,1], L2[0,1] denote the usual real reflexive Banach space with the norm
‖u‖ = (

∫ 1
0 |u(t)|2 dt)1/2 for all u ∈ L2[0,1] and the real Hilbert space with the inner prod-

uct (u, v) = ∫ 1
0 u(t)v(t) dt for all u,v ∈ L2[0,1].

It is well known that any solution of BVP (1.1) inC2[0,1] is equivalent to a solution of
the following integral equation inC[0,1],

u(t) =
1∫

0

G(t, s)f
(
s, u(s)

)
ds, t ∈ [0,1], (2.1)

whereG : [0,1] × [0,1] → [0,1] is Green’s function for−u′′(t) = 0 for all t ∈ [0,1]
subject tou(0) = u′(1) = 0, i.e.,

G(t, s) = min{t, s} =
{

t, 0� t � s � 1,

s, 0� s � t � 1.

Define operatorsK , f : C[0,1] → C[0,1] respectively by
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