Value sharing and differential equations

Ping Li
Department of Mathematics, University of Science \& Technology of China, Hefei, Anhui 230026, PR China

Received 13 August 2004
Available online 30 March 2005
Submitted by S. Ruscheweyh

Abstract

Suppose that f is a nonconstant entire function and $L[f]$ a linear differential polynomial in f with constant coefficients. In this paper, by considering the existence of the solutions of some differential equations, we find all the forms of entire functions f in most cases when f and $L[f]$ share two values counting multiplicities jointly. This result generalize some known results due to Rubel-Yang and Li-Yang. © 2005 Elsevier Inc. All rights reserved.

Keywords: Entire function; Differential equation; Value sharing

1. Introduction and results

Let $f(z)$ and $g(z)$ be two nonconstant meromorphic functions, and c a finite complex number. If $f(z)-c$ and $g(z)-c$ have the same zeros counting multiplicities (ignoring multiplicities), then we say that $f(z)$ and $g(z)$ share the value c CM (IM). We say $f(z)$ and $g(z)$ share $\infty \mathrm{CM}$ (IM) if $1 / f$ and $1 / g$ share 0 CM (IM). Let S be a subset of distinct elements in \mathbb{C}. Define

$$
E_{f}(S)=\bigcup_{a \in S}\{z \mid f(z)-a=0, \text { counting multiplicities }\},
$$

[^0]$$
\tilde{E}_{f}(S)=\bigcup_{a \in S}\{z \mid f(z)-a=0, \text { ignoring multiplicities }\} .
$$

We say that $f(z)$ and $g(z)$ share the set S CM (IM) provided that $E_{f}(S)=E_{g}(S)$ $\left(\tilde{E}_{f}(S)=\tilde{E}_{g}(S)\right.$). It was shown [11] that if an entire function f and its derivative f^{\prime} share two finite values $a, b \mathrm{CM}$, then $f \equiv f^{\prime}$. Mues-Steinmetz [8], and G. Gundersen [4] independently, improved this result. They proved that the conclusion remains to be valid if f share two values IM with f^{\prime} only. This result has been generalized to the case that f share two values with a linear differential polynomial in f by several mathematicians, see, e.g., [1] and [9,10]. Li-Yang [7] considered the case that f share two values CM jointly with its derivative, and proved that if f and f^{\prime} share the set $\left\{a_{1}, a_{2}\right\}$ CM, then f assume one of the following cases: (i) $f \equiv f^{\prime}$; (ii) $f+f^{\prime} \equiv a_{1}+a_{2}$; (iii) $f \equiv c_{1} e^{c z}+c_{2} e^{-c z}$, with $a_{1}+a_{2}=0$, where c, c_{1} and c_{2} are nonzero constants which satisfy $c^{2} \neq 1$ and $c_{1} c_{2}=\frac{1}{4} a_{1}^{2}\left(1-c^{-2}\right)$.

It is natural to ask what will be happen when f share two values jointly with its linear differential polynomial. In the present paper, we shall prove the following result.

Theorem 1. Suppose that f is a nonconstant entire function and

$$
\begin{equation*}
g=L_{n}[f]=b_{-1}+\sum_{i=0}^{n} b_{i} f^{(i)} \tag{1}
\end{equation*}
$$

where $b_{i}(i=-1,0,1, \ldots, n)$ are constants and $b_{n} \neq 0$. Let a_{1} and a_{2} be two distinct numbers in \mathbb{C}. If f and g share the set $\left\{a_{1}, a_{2}\right\} C M$, then one of the following cases holds:
(i) $f=g$;
(ii) $f+g=a_{1}+a_{2}$;
(iii) $f=\frac{a_{1}+a_{2}}{2}+\frac{h_{1}}{2}+\frac{h_{2}}{2}, g=\frac{a_{1}+a_{2}}{2}-\frac{1}{2} e^{\gamma} h_{1}+\frac{1}{2} e^{\gamma} h_{2}$, where γ is an entire function such that $T\left(r, e^{\gamma}\right)=S(r, f)$ and h_{1}, h_{2} are two entire functions satisfying $h_{1} h_{2}=$ $\left(\frac{a_{1}-a_{2}}{2}\right)^{2}\left(1-e^{-2 \gamma}\right)$, and the following two differential equations:

$$
\begin{equation*}
\sum_{k=0}^{n} b_{k} h_{1}^{(k)}=-e^{\gamma} h_{1}, \quad \sum_{k=0}^{n} b_{k} h_{2}^{(k)}=e^{\gamma} h_{2} \tag{2}
\end{equation*}
$$

Moreover, $2 b_{-1}+\left(a_{1}+a_{2}\right)\left(b_{0}-1\right)=0$.
By considering the existence of the solutions of the two equations in (2), we also give the explicit forms of h_{1} and h_{2} for some special cases.

Theorem 2. Suppose that f is a nonconstant entire function and $g=L_{n}[f]$ is the differential polynomial defined in (1), where $n=1$ or n is an even number. Let a_{1} and a_{2} be two distinct numbers in \mathbb{C}. If f and g share the set $\left\{a_{1}, a_{2}\right\} C M$, then one of the following cases holds:
(i) $f=g$;
(ii) $f+g=a_{1}+a_{2}$;

https://daneshyari.com/en/article/9502776

Download Persian Version:

https://daneshyari.com/article/9502776

Daneshyari.com

[^0]: E-mail address: pli@ustc.edu.cn.
 0022-247X/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jmaa.2005.01.068

