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Abstract

In this paper we give a sufficient condition for the exact controllability of the following model
of the suspension bridge equation proposed by Lazer and McKenna in [A.C. Lazer, P.J. McKenna,
Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear
analysis, SIAM Rev. 32 (1990) 537–578]:{

wtt + cwt + dwxxxx + kw+ = p(t, x) + u(t, x) + f (t,w,u(t, x)), 0< x < 1,

w(t,0) = w(t,1) = wxx(t,0) = wxx(t,1) = 0, t ∈ R,

wheret � 0, d > 0, c > 0, k > 0, the distributed controlu ∈ L2(0, t1;L2(0,1)), p :R × [0,1] → R

is continuous and bounded, and the non-linear termf : [0, t1]× R × R → R is a continuous function
on t and globally Lipschitz in the other variables, i.e., there exists a constantl > 0 such that for all
x1, x2, u1, u2 ∈ R we have∥∥f (t, x2, u2) − f (t, x1, u1)

∥∥ � l
{‖x2 − x1‖ + ‖u2 − u1‖}, t ∈ [0, t1].

To this end, we prove that the linear part of the system is exactly controllable on[0, t1]. Then, we
prove that the non-linear system is exactly controllable on[0, t1] for t1 small enough. That is to
say, the controllability of the linear system is preserved under the non-linear perturbation−kw+ +
p(t, x) + f (t,w,u(t, x)).
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1. Introduction

After the Tacoma Narrows Bridge collapsed on November 7, 1940, a lot of work have
been done in the study of suspension bridge models. An important contribution is the work
done by A.C. Lazer and P.J. McKenna in [6] and J. Glover et al. in [5] who proposed the
following mathematical model for suspension bridges:{

wtt + cwt + dwxxxx + kw+ = p(t, x), 0< x < 1, t ∈ R,

w(t,0) = w(t,1) = wxx(t,0) = wxx(t,1) = 0, t ∈ R,
(1.1)

whered > 0, c > 0, k > 0 andp :R × [0,1] → R is continuous and bounded function
acting as an external force.

The existence of bounded solutions of this model (1.1) and other similar equations has
been carried out recently in [1–4,7,8]. To our knowledge, the exact controllability of this
model under non-linear action of the control has not been studied before. So, in this pa-
per we give a sufficient condition for the exact controllability of the following controlled
suspension bridge equation:


wtt + cwt + dwxxxx + kw+ = p(t, x) + u(t, x) + f (t,w,u(t, x)),

0< x < 1,

w(t,0) = w(t,1) = wxx(t,0) = wxx(t,1) = 0, t ∈ R,

(1.2)

where the distributed controlu belong toL2(0, t1;L2(0,1)) andf : [0, t1] × R × R → R

is a continuous function ont and globally Lipschitz in the other variables, i.e., there exists
a constantl > 0 such that for allx1, x2, u1, u2 ∈ R we have∥∥f (t, x2, u2) − f (t, x1, u1)

∥∥ � l
{‖x2 − x1‖ + ‖u2 − u1‖

}
, t ∈ [0, t1]. (1.3)

To this end, we prove that the linear part of this system{
wtt + cwt + dwxxxx + kw+ = u(t, x), 0< x < 1,

w(t,0) = w(t,1) = wxx(t,0) = wxx(t,1) = 0, t ∈ R,
(1.4)

is exactly controllable on[0, t1] for all t1 > 0; moreover, we find the formula (4.7) to com-
pute explicitly the controlu ∈ L2(0, t1;L2(0,1)) steering an initial statez0 = [w0, v0]T to
a final statez1 = [w1, v1]T in time t1 > 0 for the linear system (1.4). Then, we use this
formula to construct a sequence of controlsun that converges to a controlu that steers an
initial statez0 to a final statez1 for the non-linear system (1.2), which proves the exact
controllability of this system. That is to say, the controllability of the linear system (1.4) is
preserved under the non-linear perturbation−kw+ + p(t, x) + f (t,w,u(t, x)).

2. Abstract formulation of the problem

The system (1.2) can be written as an abstract second order equation on the Hilbert
spaceX = L2(0,1) as follows:

ẅ + cẇ + dAw + kw+ = P(t) + u(t) + f
(
t,w,u(t)

)
, t ∈ R, (2.1)

where the unbounded operatorA is given byAφ = φxxxx with domainD(A) = {φ ∈ X:
φ,φx,φxx,φxxx are absolutely continuous, φxxxx ∈ X; φ(0) = φ(1) = φxx(0) = φxx(1)

= 1}, and has the following spectral decomposition:
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