

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 304 (2005) 147–157

Journal of
MATHEMATICAL
ANALYSIS AND
APPLICATIONS

www.elsevier.com/locate/jmaa

On the manifold of tripotents in JB*-triples

José M. Isidro a,*,1, László L. Stachó b,2

^a Facultad de Matemáticas, Universidad de Santiago, 15706 Santiago de Compostela, Spain
^b Bolyai Institute, Aradi Vértanúk tere 1, 6720 Szeged, Hungary

Received 5 November 2003

Available online 19 November 2004

Submitted by B. Bongiorno

Abstract

The manifold of tripotents in an arbitrary JB*-triple Z is considered, a natural affine connection is defined on it in terms of the Peirce projections of Z, and a precise description of its geodesics is given. Regarding this manifold as a fiber space by Neher's equivalence, the base space is a symmetric Kähler manifold when Z is a classical Cartan factor, and necessary and sufficient conditions are established for connected components of the manifold to admit a Riemann structure. © 2004 Elsevier Inc. All rights reserved.

Keywords: JB*-triples; Cartan factors; Grassmann manifolds; Banach-Lie algebras and groups; Riemann manifolds

1. Introduction

In [9] Hirzebruch proved that the manifold of minimal projections in a finite-dimensional simple formally real Jordan algebra is a compact Riemann symmetric space of rank 1, and that any such space arises in this way. Later on, in [14] Nomura estab-

^{*} Corresponding author.

E-mail addresses: jmisidro@zmat.usc.es (J.M. Isidro), stacho@math.u-szeged.hu (L.L. Stachó).

¹ Supported by Ministerio de Educación y Cultura of Spain, Research Project BFM2002-01529.

² Supported by the Bilateral Spanish-Hungarian Project E-50/2002 and Hungarian Research Grant OTKA T34267.

lished similar results for the manifold of minimal projections in a topologically simple real Jordan–Hilbert algebra. Recently, Jordan algebras and projections have been replaced by the more general notions of JB*-triples and tripotents, respectively. JB*-triples are precisely those complex Banach spaces whose open unit balls are homogeneous with respect to biholomorphic transformations.

In [1] an affine connection ∇ on \mathcal{M} , the manifold of tripotents in a JB*-triple Z, was defined in terms of the natural algebraic triple product structure of Z. Unfortunately, the description of the geodesics of ∇ given in [1, Theorem 2.7] by means of one-parameter groups of automorphisms of Z fails to be true in general since the corresponding second order differential equation is of sophisticated character. Our first goal is to develop a technique, based on exponential integrals, to find explicit formulas for the geodesics of ∇ .

It is known that \mathcal{M} is a fibre space with respect to Neher's relation of equivalence of tripotents. As proved by Kaup in [11], the base space \mathbb{P} of that fibration is the manifold of all complemented principal inner ideals of Z, which is a closed complex submanifold of the Grassmannian $\mathbb{G} = \mathbb{G}(Z)$. The connected components of \mathbb{P} , which are orbits of Γ (the structure group of Z), are symmetric complex Banach manifolds on which Γ acts as a group of isometries, see [11]. We show that ∇ induces on these orbits a Γ -invariant torsion-free affine connection (also denoted by ∇) and compute its geodesics which turn out to be orbits of one-parameter subgroups of Γ .

All tripotents in the same equivalence class (in Neher's sense) have the same rank r $(0 \le r \le \infty)$, that is constant over each connected component M of \mathbb{P} . It is reasonable to ask which of these connected components admit a Riemann structure. For Z a classical Cartan factor, we solve that problem with the aid of the concepts of *operator rank* and *operator corank*, and prove that M admits a Riemann structure if and only if either the operator rank or the operator corank are finite, in which case we prove that ∇ is the Levi-Civita and the Kähler connection of M. Some of these results were already known and due to E. Cartan in the \mathbb{C}^n setting.

2. JB*-triples and tripotents

For a complex Banach space Z, denote by $\mathcal{L}(Z)$ the Banach algebra of all bounded linear operators on Z. A complex Banach space Z with a continuous mapping $(a,b,c)\mapsto \{abc\}$ from $Z\times Z\times Z$ to Z is called a JB^* -triple if the following conditions are satisfied for all $a,b,c,d\in Z$, where the operator $a \square b\in \mathcal{L}(Z)$ is defined by $z\mapsto \{abz\}$ and $[\ ,\]$ is the commutator product:

- (1) $\{abc\}$ is symmetric complex linear in a, c and conjugate linear in b.
- (2) $[a \square b, c \square d] = \{abc\} \square d c \square \{dab\}.$
- (3) $a \square a$ is hermitian and has spectrum ≥ 0 .
- $(4) ||\{aaa\}|| = ||a||^3.$

If a complex vector space Z admits a JB*-triple structure, then the norm and the triple product determine each other. An *automorphism* is a bijection $\phi \in \mathcal{L}(Z)$ such that $\phi\{zzz\} = \{(\phi z)(\phi z)(\phi z)\}$ for $z \in Z$ which occurs if and only if ϕ is a surjective linear isometry of Z.

Download English Version:

https://daneshyari.com/en/article/9502926

Download Persian Version:

https://daneshyari.com/article/9502926

<u>Daneshyari.com</u>