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Abstract

The main object of this paper is to give analogous definitions of Apostol type (see [T.M. Apostol,
On the Lerch Zeta function, Pacific J. Math. 1 (1951) 161–167] and [H.M. Srivastava, Some formulas
for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc.
129 (2000) 77–84]) for the so-called Apostol–Bernoulli numbers and polynomials of higher order.
We establish their elementary properties, derive several explicit representations for them in terms of
the Gaussian hypergeometric function and the Hurwitz (or generalized) Zeta function, and deduce
their special cases and applications which are shown here to lead to the corresponding results for the
classical Bernoulli numbers and polynomials of higher order.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction, definitions and preliminaries

The classical Bernoulli polynomialsBn(x) and the classical Euler polynomialsEn(x),
together with their familiar generalizationsB(α)

n (x) andE
(α)
n (x) of (real or complex) or-

derα, are usually defined by means of the following generating functions (see, for details,
[8] and [10, p. 61 et seq.]):(
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so that, obviously,

Bn(x) := B(1)
n (x) and En(x) := E(1)

n (x) (n ∈ N0), (3)

where

N0 := N ∪ {0} (
N := {1,2,3, . . .}).

For the classical Bernoulli numbersBn and the classical Euler numbersEn, we readily find
from (3) that

Bn := Bn(0) = B(1)
n (0) and En := En(0) = E(1)

n (0) (n ∈ N0). (4)

Some interesting analogues of the classical Bernoulli polynomials and numbers were
investigated by Apostol [2, Eq. (3.1), p. 165] and (more recently) by Srivastava [9, pp. 83–
84]. We begin by recalling here Apostol’s definitions as follows.

Definition 1 (Apostol [2]; see also Srivastava [9]). The Apostol–Bernoulli polynomials
Bn(x;λ) are defined by means of the following generating function:

zexz
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Bn(x;λ)
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)
(5)

with, of course,

Bn(x) = Bn(x;1) and Bn(λ) := Bn(0;λ), (6)

whereBn(λ) denotes the so-called Apostol–Bernoulli numbers.

Apostol [2] not only gave elementary properties of the polynomialsBn(x;λ), but also
obtained the following recursion formula of the numbersBn(λ) (see [2, Eq. (3.7), p. 166]):

Bn(λ) = n

n−1∑
k=0

k!(−λ)k

(λ − 1)k+1
S(n − 1, k)

(
n ∈ N0; λ ∈ C\{1}), (7)
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