

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 304 (2005) 607-613

Journal of
MATHEMATICAL
ANALYSIS AND
APPLICATIONS

www.elsevier.com/locate/jmaa

Spectral synthesis on torsion groups [☆]

Áron Bereczky^a, László Székelyhidi^{b,*}

Department of Mathematics and Statistics, Sultan Qaboos University, Oman
 Institute of Mathematics, University of Debrecen, Hungary

Received 18 April 2004

Available online 19 November 2004

Submitted by M. Laczkovich

Abstract

Spectral synthesis on Abelian torsion groups is proved. © 2004 Elsevier Inc. All rights reserved.

Keywords: Spectral analysis; Spectral synthesis; Torsion groups

In this paper \mathbb{C} denotes the set of complex numbers. If G is an Abelian group then \mathbb{C}^G denotes the locally convex topological vector space of all complex valued functions defined on G, equipped with the pointwise operations and the product topology. The dual of \mathbb{C}^G can be identified with $\mathcal{M}_c(G)$, the space of all finitely supported complex measures on G. This space is also identified with the set of all finitely supported complex valued functions on G in the following obvious way. If the point mass concentrated at the element g is denoted by δ_g , then each measure x in $\mathcal{M}_c(G)$ has a unique representation in the form

$$x = \sum_{g \in G} x(g) \delta_g$$

E-mail addresses: aron@squ.edu.om (Á. Bereczky), szekely@math.klte.edu (L. Székelyhidi).

[☆] The research was partly supported by the Hungarian National Foundation for Scientific Research (OTKA), Grants T-031995 and T-043080.

Corresponding author.

with some finitely supported function $x: G \to \mathbb{C}$. "Identification" means that we use the same letter x for both the measure and the representing function. In this sense δ_g is the characteristic function of the singleton $\{g\}$. The pairing between \mathbb{C}^G and $\mathcal{M}_c(G)$ is given by the formula

$$\langle x, f \rangle = \sum_{g \in G} x(g) \overline{f(g)}.$$

Convolution on $\mathcal{M}_c(G)$ is defined in the usual way by putting

$$x * y(g) = \sum_{h \in G} x(h)y(gh^{-1})$$

for any x, y in $\mathcal{M}_c(G)$ and g in G. This convolution converts the linear space $\mathcal{M}_c(G)$ into a commutative algebra with unit δ_1 . One realizes immediately that the algebra $\mathcal{M}_c(G)$ is identical with the finite group algebra of G. Hence we can use the alternative notation $\mathbb{C}G$ for $\mathcal{M}_c(G)$, which may be more familiar for algebraists. In this sense we can consider G as a subset of $\mathbb{C}G$ by identifying the group element g with the corresponding measure δ_g .

Homomorphisms of G into the additive group of complex numbers, or into the multiplicative group of nonzero complex numbers are called *additive*, or *exponential functions*, respectively. Bounded exponential functions are exactly the *characters* of G. A function of the form $g \mapsto P(a_1(g), a_2(g), \ldots, a_n(g))$ on G is called a *polynomial*, if P is a complex polynomial in n variables and a_k is additive for $k = 1, 2, \ldots, n$. A complex valued function on G is called an *exponential monomial* if it is the product of a polynomial and an exponential. Linear combinations of exponential monomials are called *exponential polynomials*. In particular, linear combinations of characters are called *trigonometric polynomials*.

Translation with the element h in G is the operator mapping any function f in \mathbb{C}^G onto its translate $\tau_h f$ defined by $\tau_h f(g) = f(gh)$ for any g in G. A subset of \mathbb{C}^G is called translation invariant if it contains all translates of its elements. A closed linear subspace of \mathbb{C}^G is called a variety on G if it is translation invariant.

For any variety V on G the *annihilator of* V is the set V^{\perp} of all measures in $\mathbb{C}G$ which vanish on V. Clearly this is an ideal, which is proper if and only if V is nonzero. Similarly, for any ideal I in $\mathbb{C}G$ the *annihilator of* I is the set I^{\perp} of all functions in \mathbb{C}^G , which are annihilated by all measures in I. Clearly this is a variety on G, which is nonzero if and only if I is proper. Moreover, by the Hahn–Banach theorem it is clear that $V^{\perp \perp} = V$ and $I^{\perp \perp} = I$ holds for each variety on G and for any ideal I in $\mathbb{C}G$. For more details see, e.g., [7].

The basic question of spectral analysis on *G* can be formulated as follows: does any nonzero variety on *G* contain an exponential function? If so, then we say that *spectral analysis holds on G*. In [8] the second author proved that if *G* is an Abelian torsion group then the answer is "yes." Recently in [4] M. Laczkovich and G. Székelyhidi have presented a complete characterization of Abelian groups having spectral analysis: it is necessary and sufficient that the torsion free rank of the group is less than the continuum.

Another basic problem concerns spectral synthesis on G: given a nonzero variety on G, do the exponential monomials in this variety span a dense subspace? If so, then we say that spectral synthesis holds on G. This is the case, for instance, if G is a finitely generated free Abelian group by a result of G. Lefranc [5]. In [2] R.J. Elliot presented a theorem stating

Download English Version:

https://daneshyari.com/en/article/9503235

Download Persian Version:

https://daneshyari.com/article/9503235

<u>Daneshyari.com</u>