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Abstract

The existence of bifurcating periodic flows in a quasi-geostrophic mathematical model of wind-
driven circulation is investigated. In the model, the Ekman numberr and Reynolds numberR control
the stability of the motion of the fluid. Through rigorous analysis it is proved that when the basic
steady-state solution is independent of the Ekman number, then a spectral simplicity condition is
sufficient to ensure the existence of periodic solutions branching off the basic steady-state solution
as the Ekman number varies across its critical value for constant Reynolds number. When the ba-
sic solution is a function of Ekman number, an additional condition is required to ensure periodic
solutions.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Bifurcation analysis plays a crucial role in understanding qualitative changes of flow
regimes of oceanic and atmospheric circulation equations. From the view point of numer-
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ical experiments, bifurcation phenomena relating to ocean circulation were examined by
Charney and DeVore [2], Veronis [19,20], and Pedlosky [15] to determine the occurrence
of multi steady-state solutions, whereas Jiang et al. [9], Jin and Ghil [10] predicted periodic
circulatory motions.

Because wind-driven circulation problems embody extremely complex physical mech-
anisms, to aid understanding it is beneficial to study simplified models (see Ghil and
Childress [6], Lions et al. [13,14], and Pedlosky [16]). For example, Pedlosky [16] de-
veloped a suitable mathematical model describing mid-latitude wind-driven circulation
through a quasi-geostrophic approximation. This model describes the dynamics of cir-
culation flow-driven by a wind stress and influenced by Ekman friction layers, bottom
topography, and aβ-plane approximation of the Coriolis force.

The purpose of this study is to derive a general Hopf bifurcation theorem of the two-
dimensional simplified wind-driven circulation equation (see Pedlosky [16, Eq. (5.2.22)])
which can be expressed in the following dimensionless vorticity formulation:

∂t∆ψ + r∆ψ − 1

R
∆2ψ + β∂xψ + J (ψ,∆ψ + η

B
) = β curlτ in Ω (1)

together with the free slip boundary condition

ψ = 0, ∆ψ = 0 on∂Ω. (2)

HereJ (ψ,φ) = ∂xψ∂yφ − ∂yψ∂xφ is the advection operator,ψ = ψ(x, y, t) describes a
geostrophic stream function,τ = (τ1(x, y), τ2(x, y)) is a steady-state wind stress applied
on the circulation basinΩ . Thex-axis points eastwards and they-axis northwards. The
zonal and meridional velocity componentsu andv are given by

u = −∂yψ, v = ∂xψ,

and the relative vorticityζ is defined byζ = ∆ψ .
The mathematical formulation (1) is a quasi-geostrophic approximation of the shallow

water equation under the effect of a Coriolis force (see [16]). The parameterη
B

= η
B
(x, y)

is a function measuring the topography height of the bottom of the original fluid domain.
Control parameters defining the fluid motion are Reynolds numberR, the Ekman numberr
measuring the effects of friction arising from the top and bottom Ekman layers of the
fluid, and the numberβ is derived from aβ-plane approximation of the Coriolis force.
The interested reader may find further descriptions of this equation and the theoretical
background by consulting Pedlosky [16, pp. 260–261].

The existence of bifurcating periodic solutions branching off a basic steady-state solu-
tion of an ordinary differential equation system was first derived by Hopf [7,8]. The Hopf
bifurcation theorem of Navier–Stokes equations is well-established under the assumption
that the nonreal eigenvalue of the linearized spectral problem satisfies the simplicity con-
dition and a condition relating to the transversal crossing of the imaginary axis at a critical
value of Reynolds number (see Yudovich [22], Joseph and Sattinger [11]). Equation (1) is
similar in form to the vorticity formulation of Navier–Stokes equations. Thus the Hopf bi-
furcation theorem derived in [11] is applicable to (1) to ensure the existence of bifurcating
periodic solutions as the Reynolds number varies across a critical valueRc for constant
Ekman number. However (1) also depends on the Ekman numberr and this introduces
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