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Abstract

In this paper, we study the behavior of positive solutions of the system of high order
rational difference equations
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where p and ¢ are positive integers with p < ¢, and a and b are positive constants.
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1. Introduction

In recent years, the behavior of positive solutions of various systems of
rational difference equations has been one of the main topics in the theory of
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difference equations [1-5]. In particular, Cinar [1] proved that all positive solu-
tions of the system of difference equations
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are period four.
In this paper, we study the system of high order difference equations
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where p and ¢ are positive integers with p < ¢, and a and b are positive con-
stants. When p =1, ¢ =2, and a = b =1, Eq. (1.2) reduces to Eq. (1.1).

2. Main results
We first examine the periodicity of positive solutions of Eq. (1.2).

Theorem 2.1. If'a = b, and q is divisible by p, then every positive solution of Eq.
(1.2) is period 24.

Proof. Assume ¢ = rp, where r is a positive integer. Consider an arbitrary posi-

tive solution {(x,,»,)},~ (,_1) of Bq. (1.2). For each n > ¢+ 1, replacing
into y, = pand multiplying both sides by y,_,, we get the

Xn—qVn—q

a
Yn—(p+q) .
recurrence relation

Xy—q =

ynynfq = yn—pyn—(p+q)' (21)
It follows by repeatedly applying this recurrence relation that
y"y"_q = yrz—pyn—(p+q) = y”—zpyﬂ—(2p+q) == yn—rpyn—(rp+q) = yn—qyn—Zq'
So Yn= Yn—2q and hence Xn = - = ; 4= Xn—2g- The proof is
Yn—p Yn—p-2¢

completed. [

As a direct consequence of this theorem, we again obtain the result in [1] as
follows.
Corollary 2.2. Every positive solution of Eq. (1.1) is period 4.

We then examine the monotonicity of positive solutions of Eq. (1.2).

Theorem 2.3. Assume q is divisible by p. Let {(x,, y,l)},ﬁ7<q71) be an arbitrary
positive solution of Eq. (1.2).
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