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Abstract

One of the integration methods is the Second Kind of Gauss–Chebyshev quadrature

rule, denoted by:Z 1
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f ð2nÞðgÞ; �1 < g < 1:

According to Gauss quadrature rules, the precision degree of above formula is the high-

est, i.e. 2n � 1. Hence, it is not possible to increase the precision degree of Second Kind

of Gauss–Chebyshev integration formulas anymore. But, on the other hand, we claim

that we can improve the above formula numerically. To do this, we consider the integral

bounds as two unknown variables. This causes to numerically be extended the mono-

mial space f(x) = xj from j = 0,1, . . . , 2n � 1 to j = 0,1, . . . , 2n + 1. This means that we
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have two monomials more than Second Kind Gauss–Chebyshev integration method. In

other words, we give an approximate formula as:Z b
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in which a,b and w1,w2, . . . ,wn and x1,x2, . . . ,xn are all unknowns and the formula is al-

most exact for the monomial basis f(x) = xj,j = 0,1, . . . , 2n + 1. Some important exam-

ples are finally given to show the excellent superiority of the proposed nodes and

coefficients with respect to the Second Kind Gauss–Chebyshev nodes and coefficients.

Let us add that in this part we give also some wonderful 2-point, 3-point and 4-point

formulas that are respectively comparable with 103-point, 261-point and 108-point for-

mulas of Second Kind Gauss–Chebyshev quadrature rules in average.
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1. Introduction

It is known that the general form of Gauss quadrature rules is indicated as:Z b

a
f ðxÞdwðxÞ ¼

Xn
j¼1

wjf ðxjÞ þ
Xm
k¼1

vkf ðzkÞ þ Rn;m½f �; ð1Þ

where the weights ½wj�nj¼1; ½vk�
m
k¼1 and nodes ½xj�nj¼1 are unknowns and the nodes

½zk�mk¼1 are predetermined, w is also a positive measure on [a,b] (see [10–12]).

The residue Rn,m[f] is determined (see for instance [13]) by:

Rn;m½f � ¼
f ð2nþmÞðgÞ
ð2nþ mÞ!
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By selecting dwðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
dx; a ¼ �1; b ¼ 1 and m = 0 we reach the Second

Kind Gauss–Chebyshev formula. In other words we have:Z 1
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where,
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