Available online at www.sciencedirect.com

science d direct®

SEVIER Applied Mathematics and Computation 165 (2005) 613–621

www.elsevier.com/locate/amc

The Choi–Saigo–Srivastava integral operator and a class of analytic functions

Yi Ling *, Fengshan Liu

Applied Mathematics Research Center, Delaware State University, Dover, DE 19901, USA

Abstract

Let \mathscr{A} be the class of the normalized analytic functions in the unit disk \mathbb{U} , and $\mathscr{K}(\alpha)$ denote the subclass of \mathscr{A} consisting of the convex functions of order α in \mathbb{U} . It is known that the operator $f_{\lambda,\mu}$ was defined such that $f_{\lambda} * f_{\lambda,\mu} = z/(1-z)^{\mu}(\mu > 0)$, where * denotes the Hadamard product and $f_{\lambda} = z/(1-z)^{\lambda+1}(\lambda > -1)$. The Choi–Saigo–Srivastava integral operator $\mathscr{I}_{\lambda,\mu}$ was defined such that $\mathscr{I}_{\lambda,\mu}f = f_{\lambda,\mu} * f$. By using the operator $\mathscr{I}_{\lambda,\mu}$, we define the class $\mathscr{K}(\lambda,\mu)(\alpha) = \{f \in \mathscr{A} | \mathscr{I}_{\lambda,\mu}f \in \mathscr{K}(\alpha)\}$. In this paper, we study various inclusion properties of this class, some distortion theorems and coefficient inequalities. We have also provided some well-known results as corollaries of our theorems. © 2004 Elsevier Inc. All rights reserved.

Keywords: Distortion theorems; Analytic functions; Choi–Saigo–Srivastava integral operator; Univalent functions; Convex functions; Hypergeometric function

^{*} Corresponding author. *E-mail address:* yling@desu.edu (Y. Ling).

0096-3003/\$ - see front matter @ 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2004.04.031

1. Introduction and definitions

Let \mathscr{A} denote the class of functions f(z) normalized by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disk

$$\mathbb{U} := \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \}.$$

Also, given $\alpha < 1$, let \mathscr{S} , $\mathscr{S}^*(\alpha)$ and $\mathscr{K}(\alpha)$ denote the subclasses of \mathscr{A} consisting of functions which are, respectively, *univalent*, *starlike of order* α and *convex of order* α in \mathbb{U} (see, for details, [4], [5] and [8]). In particular, the class

$$\mathscr{S}^*(0) = \mathscr{S}^*$$
 and $\mathscr{K}(0) = \mathscr{K}$

are the well-known classes of starlike and convex functions in \mathbb{U} , respectively.

A function $f(z) \in \mathscr{A}$ is said to be in the class of *prestarlike functions of order* α ($\alpha < 1$), denoted by $\mathscr{P}(\alpha)$ [7], if

$$\frac{z}{\left(1-z\right)^{2\left(1-\alpha\right)}} * f(z) \in S^{*}(\alpha), \quad z \in \mathbb{U},$$
(1)

where "*" denotes the Hadamard product (or convolution). In [7], it is shown that $\mathscr{P}(\alpha) \subset \mathscr{P}(\beta)$ for $\alpha \leq \beta < 1$. Also it is easy to show that $\mathscr{P}(\frac{1}{2}) = \mathscr{S}^*(\frac{1}{2})$, $\mathscr{P}(0) = \mathscr{K}$.

Almost two decades ago, Carlson and Shaffer [2] defined a linear operator $\mathscr{L}(a,c): \mathscr{A} \to \mathscr{A}$ by

$$\mathscr{L}(a,c)f(z) := \varphi(a,c;z) * f(z) \quad (f(z) \in \mathscr{A}),$$
(2)

where

$$\varphi(a,c;z) := \sum_{k=0}^{\infty} \frac{(a)_k}{(c)_k} z^{k+1} (z \in \mathbb{U}; c \notin \mathbb{Z}_0^- := \{0, -1, -2, \ldots\})$$
(3)

and $(\lambda)_k$ denotes the Pochhammer symbol given, in terms of Gamma functions, by

$$(\lambda)_k := \frac{\Gamma(\lambda+k)}{\Gamma(\lambda)} = \begin{cases} 1 & (k=0), \\ \lambda(\lambda+1)\dots(\lambda+k-1) & (k\in\mathbb{N}). \end{cases}$$

The operator $\mathscr{L}(a,c)$ maps \mathscr{A} onto itself and is continuous on \mathscr{A} (see [2]). In addition, for c > a > 0, $\mathscr{L}(a,c)$ has the integral representation

$$\mathscr{L}(a,c)f(z) = \int_0^1 \frac{f(uz)}{u} \mathrm{d}\mu(a,c-a)(u),\tag{4}$$

Download English Version:

https://daneshyari.com/en/article/9506723

Download Persian Version:

https://daneshyari.com/article/9506723

Daneshyari.com