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Abstract

In this paper, we discuss the structure of the solution space of system of operator

equations of the first kind Aiu = fi, i = 1,2, . . . ,n in Hilbert spaces. If it has solutions,

we give the analytic representation of all its solutions. Final examples show our methods

are effective.
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1. Introduction

Let H, H1 be separable Hilbert spaces, and let A:H ! H1 be a bounded lin-

ear operator. Consider operator equations of the first kind

Au ¼ f ; u 2 H ; f 2 H 1: ð1Þ
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Usually, operator equations of the first kind is ill-posed, so the problem of

how to solve Eq. (1) becomes very important. Here, ill-posed means that at

least one of the following three conditions cannot be satisfied:

(1) Eq. (1) has solutions for every f 2 H1;

(2) Eq. (1) has a unique solution for every f 2 H1;
(3) inverse operator A�1 is continuous.

Usually, in order to solve Eq. (1), it needs to suppose that A�1 is single-val-

ued. In this paper, Only supposing ill-posed Eq. (1) has solutions, we discuss

the structure of its solution space and obtained the following results:

(1) If Eq. (1) has solutions, we represent its solution space as u0 + N(A), where

u0 is the minimal norm solution of Eq. (1), and N(A) is the null space of
operator A, namely, N(A) = {x 2 HjAx = 0};

(2) a complete orthonormal system of N(A) is given.

For generality, we directly discuss the following system of linear operator

Eqs. (I) in Hilbert spaces,

A1u ¼ f1
A2u ¼ f2

..

.

Anu ¼ fn

8>>>><
>>>>:

u 2 H ; f i 2 H 1; i ¼ 1; 2; . . . ; n; ðIÞ

where H, H1 are separable Hilbert spaces, for every i = 1,2, . . . ,n, Ai:H ! H1 is

a bounded linear operator.

2. Lemmas

Throughout this paper, we suppose that Ai:H ! H1 is a bound linear oper-

ator, N(Ai) is the null space of operator Ai, namely, N(Ai) = {x 2 HjAix = 0}.

For M � H1, we denote span M by [M] and the closure of M by M . Suppose

frig1i¼1 � H , and we use f�rig1i¼1 to denote the system of functions that is ob-

tained from frig1i¼1 by Gram–Schmidt process of orthonormalization.
We can easily obtain the following lemma.

Lemma 2.1. Suppose f0g 6¼ frig1i¼1; fvig
1
i¼1 � H . Define f�rig1i¼1 and f~vig1i¼1 as

follows:

�r1 ¼
r1

kr1k
; ð2Þ
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