

Available online at www.sciencedirect.com

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

Journal of Computational and Applied Mathematics 180 (2005) 245 – 263

www.elsevier.com/locate/cam

Convergence of nonstationary multisplitting methods using ILU factorizations

Jae Heon Yun[∗]

Department of Mathematics, College of Natural Sciences, Chungbuk National University, Cheongju, 48 Gaeshin-dong, Heungduk-Gu, Chungbuk 361-763, Republic of Korea

Received 13 January 2004; received in revised form 26 October 2004

Abstract

In this paper, we first study convergence of nonstationary multisplitting methods associated with a multisplitting which is obtained from the ILU factorizations for solving a linear system whose coefficient matrix is a large sparse *H*-matrix. We next study a parallel implementation of the *relaxed nonstationary two-stage multisplitting method* (called Algorithm 2 in this paper) using ILU factorizations as inner splittings and an application of Algorithm 2 to parallel preconditioner of Krylov subspace methods. Lastly, we provide parallel performance results of both Algorithm 2 using ILU factorizations as inner splittings and the BiCGSTAB with a parallel preconditioner which is derived from Algorithm 2 on the IBM p690 supercomputer.

© 2004 Elsevier B.V. All rights reserved.

MSC: 65F10; 65F15

Keywords: Nonstationary multisplitting method; ILU factorization; *H*-matrix; Multisplitting; Krylov subspace method

1. Introduction

In this paper, we consider parallel nonstationary multisplitting methods for solving a linear system of the form

$$
Ax = b, \quad x, b \in \mathbb{R}^n,\tag{1}
$$

[∗] Tel.: 82 4326 12 250; fax: +82 4327 49 619.

E-mail address: gmjae@chungbuk.ac.kr (J.H. Yun).

^{0377-0427/\$ -} see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.cam.2004.10.015

where $A \in \mathbb{R}^{n \times n}$ is a large sparse *H*-matrix. Multisplitting method was introduced by O'Leary and White [\[14\]](#page--1-0) and was further studied by many authors [6,13,19,23]. The multisplitting method can be thought of as an extension and parallel generalization of the classical block Jacobi method [\[3\].](#page--1-0)

A representation $A = M - N$ is called a *splitting* of A when M is nonsingular. A splitting $A = M - N$ is called *regular* if $M^{-1} \ge 0$ and $N \ge 0$, and it is called *weak regular* if $M^{-1} \ge 0$ and $M^{-1}N \ge 0$ [\[1\].](#page--1-0) A collection of triples (M_k, N_k, E_k) , $k = 1, 2, ..., \ell$, is called a *multisplitting* of *A* if $A = M_k - N_k$ is a splitting of *A* for $k = 1, 2, ..., \ell$, and E_k 's, called weighting matrices, are nonnegative diagonal matrices such that $\sum_{k=1}^{\ell} E_k = I$. The *relaxed nonstationary multisplitting method* associated with this multisplitting and a positive relaxation parameter ω for solving a linear system $Ax = b$ is as follows.

Algorithm 1. Relaxed nonstationary multisplitting method

Given an initial vector x_0

For $i = 1, 2, \ldots$, until convergence For $k = 1$ to ℓ $y_{k,0} = x_{i-1}$ For $j = 1$ to $s(k, i)$ $M_k y_{k,j} = N_k y_{k,j-1} + b$ $x_i = \omega \sum^{\ell}$ $k=1$ $E_k y_{k,s(k,i)} + (1 - \omega) x_{i-1}.$

Notice that Algorithm 1 with $\omega = 1$ is called the *nonstationary multisplitting method*. Mas et al. [\[10\]](#page--1-0) showed the convergence of Algorithm 1 under certain conditions when *A* is an *H*-matrix. When (M_k, N_k, E_k) , $k = 1, 2, ..., \ell$, is a multisplitting of *A* and $M_k = B_k - C_k$ is a splitting of M_k for each *k*, the *relaxed nonstationary two-stage multisplitting method* with a positive relaxation parameter ω for solving a linear system $Ax = b$ is as follows.

Algorithm 2. Relaxed nonstationary two-stage multisplitting method

Given an initial vector x_0 For $i = 1, 2, \ldots$, until convergence For $k = 1$ to ℓ $y_{k,0} = x_{i-1}$ For $j = 1$ to $s(k, i)$ $y_{k,j} = \omega B_k^{-1} (C_k y_{k,j-1} + N_k x_{i-1} + b) + (1 - \omega) y_{k,j-1}$ $x_i = \sum^{\ell}$ $k=1$ $E_k y_{k,s(k,i)}.$

In Algorithm 2, the splittings $A=M_k-N_k$ are called outer splittings and the splittings $M_k=B_k-C_k$ are called inner splittings. Bru et al. [\[3\]](#page--1-0) showed the convergence of Algorithm 2 when *A* is a monotone matrix (i.e., $A^{-1} \ge 0$) or *A* is an *H*-matrix. If $\omega = 1$ in Algorithm 2, then Algorithm 2 reduces to the *nonstationary two-stage multisplitting method*. Notice that the loop *k* of Algorithms 1 and 2 can be executed completely in parallel by different processors. Also notice that the number of inner iterations $s(k, i)$ in Algorithms 1 and 2 depends on the iteration *i* and the splitting $A = M_k - N_k$. Throughout the paper, it is assumed that Download English Version:

<https://daneshyari.com/en/article/9509336>

Download Persian Version:

<https://daneshyari.com/article/9509336>

[Daneshyari.com](https://daneshyari.com/)