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Abstract

The bifurcation function associated with an elliptic boundary value problemAu+g[u]=0 is a vector fieldB(�)
on Rd with the property that the solutions of the boundary value problem are in a one-to-one correspondence with
the zeros ofB. A finite element approximationBh of B is formulated and optimal order error estimates are derived.
Implementation issues are also discussed.
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1. Introduction

The problem of determining the set of solutionsS(�) of a semilinear elliptic boundary value problem,
Lu+ g[u, �] = 0, has been considered by many authors. In general, this is a problem of global analysis,
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although many of the methods used are local in natural. For example, continuation methods and the
method of Lyapunov–Schmidt. Continuation methods (see[13] for a general development) assume a
known noncritical solution(u0, �0), and obtain nearby solutions by varying� in a neighborhood of�0.
The implicit function theorem guarantees that there is a unique curve of solutions to be found. In the
method of Lyapunov–Schmidt (cf.[9]), the implicit function theorem is used to reduced the problem to the
null space of the linearization at a critical point(u0, �0). It thus reduces the problem, in the neighborhood
of the critical point, to a finite-dimensional problem.

For an important class of problems, there is another approach that applies directly to the global problem.
Using the method of alternative problems (cf.[8,9]) the elliptic problem can be shown to be equivalent to a
finite dimensional problem. In this way the global problem is recast as a vector field equationB(�, �)=0,
� ∈ Rd , for some (typically small) integerd. The vector field,B(�, �) is called the bifurcation function.
The reduction process that leads to the bifurcation equation,B(�, �)=0, can be regarded as a technique for
correcting Galerkin’s method so that it becomes exact. However, by construction, the bifurcation function
depends on solutions of a nonlocal boundary value problem, and hence this information is not readily
accessible analytically except in some special cases. To extend the utility of the bifurcation function
numerical methods are needed.

Theoretically, the process relies on the use of spectral quantities; namely the eigenfunctions of a
linear operator. As a consequence, when the eigenfunctions are known they can be used to develop
a spectral numerical method that mimics the actual construction. This approach relies on special op-
erators and geometries. To allow for more general situations we presented a finite element method
in [14] for computing the bifurcation function for self-adjoint problems. In this work we show that
the method extends to elliptic problems that are not self-adjoint, and at the same time verify opti-
mal order error estimates. In our previous work, we were only able to verify sub-optimal error es-
timates. The proofs presented here are also considerably simplier than those given in our
previous work.

Several other authors have contributed to the numerical analysis of continuation and bifurcation methods
for elliptic boundary value problems. Among the first were Kikuchi[11,12] and Brezzi et al.[5–7].
Approximating a branch of solutions without bifurcation points was discussed in the works[5,6,12], while
the case of approximating bifurcating curves of solutions, in the neighborhood of a simple bifurcation
point, was considered in[7,11]. A numerical version of the method of Lyapunov–Schmidt was proposed
by Bohmer and Mei in[2,1] for approximating branching manifolds in the neighborhood of a possibly
higher order bifurcation point. See the papers[3,4] for extensions of these earlier works. In contrast to
these works, our work focuses on characterizing and computing the entire set of solutionsS(�), for a
given value of� that is typically not a bifurcation point.

In Section 2 we outline the reduction process that leads to the bifurcation function for a semilinear
elliptic boundary value problem.A finite element method for computing approximations to the bifurcation
function is also described there. In Section 3 proofs of optimal error estimates are given. Necessarily,
error estimates of the solutions of the associated nonlocal boundary value problem are also established.
Estimates on approximate solutions of the boundary value problem also follow from these estimates since
all solutions must lie on a manifold determined by the nonlocal problem. Section 4 discusses the resulting
algebraic problems that arise at the level of matrix–vector representations. Computational examples of the
use of the bifurcation function to determine all solutions of a boundary value problem and their stability
properties can be found in[15].
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