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Abstract

Considered the semiparametric regression model

li = AT
i X + s(ti)+ �i (i = 1,2, . . . , n).

Firstly, ridge estimators of both parameters and nonparameters are attained without a restrained design matrix.
Secondly, the ridge estimator will be compared with two steps estimation under a mean square error and some
conditions in which the former excels the latter are given. Finally, the validity and feasibility of the method are
illustrated by a simulating example.
© 2004 Published by Elsevier B.V.
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1. Introduction

Consideredthe semiparametric regression model

li = AT
i X + s(ti)+ �i (i = 1,2, . . . , n), (1a)

wheresi = s(ti) denotes the nonparametric signal of the observation andli denotes a number related
to the observation atti , Ai ∈ Rp(n>p),X = (x1, . . . , xp)

T is a parameter vector withp denoting
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the number of parameters or unknowns, and�i denotes the noise and is assumed to be independently
N(0, �2)-distributed.
In vector notation, the data model is given by

L= AX + S + �, (1b)

whereL = (l1, . . . , ln)
T andS = (s1, s2, . . . , sn)

Tcorrespond tot = (t1, . . . , tn)
T (ti �= tj for i �= j),

design matrixA = (A1, . . . , An)
T without any restrained conditions, namely,rank (A)<p or rank

(A)= p (ill-conditioned or not).
The model (1) has been used in the discussion of many methods, e.g., penalized least-squares (see

[1]), smoothing splines (see[2]), piecewise polynomial (see[6]) and two steps estimation methods (see
[5,7,8]). The essential thought of two steps estimation is the following: the first step,S(t, X) is defined
with supposition whereX is supposed to be known; the second step, the estimator of parametricX is
attained by a least-squares method; accordingly,Ŝ(t)=S(t, X̂) is gained. However, they all assumerank
(A) = p. In fact, if full rankA is an ill-conditioned matrix, then the results may not fulfil our wishes, or
can even be false in some situations, especially for small samples. Many papers do not consider the case
rank (A)<p, and few people investigate the situation that the design matrixA is rank-deficient.
Although there are many results about ridge estimation of linear models (see[3,4,9]), to the best of my

knowledge, nothing is known about a semiparametric regression model. It is noticeable that textual ridge
estimationnot only solves rank-deficient and ill-conditionedproblems, but alsooffers anewmethodwhich
can dealwith (non)linear and semiparametric regressionmodels forrank(A)=pwithout ill-conditioning.

2. Ridge estimation method

In the following, one introduces ridge estimation method based on a two steps estimation process.
In the first step, we assume thatX is known, and the nonparametric estimator ofS is defined by

S(t, X)=W(t, �)(L− AX), (2)

based on{li −AT
i X, ti}(i=1, . . . , n), where� is an arbitrary parameter andW(t, �) is an(n×n)matrix.

Depending on the particular choice ofW(t, �), the two steps estimation process leads to differentmethods,
such as wavelet estimate (see[8]), near neighbour estimation (see[5]), or kernel estimation (see[7]).
Substituting (2) into (1), we have

L̃= ÃX + �̃, (3)

where

Ã= (I −W)A, L̃= (I −W)L, �̃ = S̃ + (I −W)�, S̃ = (I −W)S. (4)

Though (3) is a linear model, it is different from the generic one because the error�̃ is related toS, t ,
X andW .
In the second step, with minimal condition

V TV + �X̂TX̂ = min (V = ÃX̂ − L̃), (5)
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