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Abstract

This manuscript details Bayesian methodology for “learning by example”, with binaryn-sequences encoding the
objects under consideration. Priors prove influential; conformable priors are described. Laplace approximation of
Bayes integrals yields posterior likelihoods for alln-sequences. This involves the optimization of a definite function
over a convex domain—efficiently effectuated by the sequential application of the quadratic program.
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1. Introduction

This manuscript self-containedly describes new methodology for the well-rooted desideratum of “learn-
ing by example”. To precise this aim, let binaryn-sequences represent the elements of the universe of
possible examples. Then, the desideratum may be paraphrased as “characterizing a distribution on binary
n-sequences, based upon a sample from this distribution” because, for instance, thesine qua nonof pre-
diction is making intelligent use of the examples for the classification of supplementary elements. This
aim compasses many applications, e.g., the screening of digital images or of biological sequences—to
find elements resembling those from a data set.
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Bayesian methods constitute a peerless framework for data-based inference[4]. They engender a
posterior distribution (what is inferred, based on the examples) from a prior distribution (what is as-
sumed, at the outset, before the examination of the examples). As the desideratum is a distribution,
the respective posterior distribution is a distribution on distributions – accentuating those distributions
in greatest accordance with the examples, as described in Section 2. The reader who seeks an intro-
duction to Bayesian statistics cannot do better than to consult[4], and, alternatively, the uninitiated
may take its present instantiation (cf. (2)) as a postulate. The burgeoning of this application of Bayes’
rule bided the impediment of a decided, unwelcome dependence of the posterior distribution upon the
prior distribution. As will be seen in Section 2, a uniform (unprejudiced) prior is unavailing, and the
new methodology comprises the detailed specification of priors. Insights sufficing for the selection of
nonuniform priors may originate, for instance, from sample estimates of key parameters of probability
distributions.

Parameterizations for distributions on binaryn-sequences usually base their parameters on marginal
distributions for subsets of digits[2,5,17,24], and sampling of these distributions is feasible using Markov
chain Monte Carlo methods. The moment parameterization, reviewed in Section 3, is used to engineer the
new methodology. Prior distributions are, herein, taken to be uniform over all distributions having specified
vanishing moments (although fixing moments at nonzero values is also accommodated in the present
framework). Section 4 introduces this prior, gives consideration to distributions exhibiting vanishing
moments and digresses upon dialectics. Applications corroborate the felicitousness of this prior (viz.
Section 11). The linearity of the moment parameterization is its greatest boon; whence, for example, each
fixed-moment prior educes a convex polytope: an intersection of half spaces[11] constitutes the domain of
admissible collections of (nonfixed) moment parameters. In detail, there is a half-space pertaining to each
n-sequence, ensuring the nonnegativity of the respective linear combination of the moments expressing
its probability.

As described in Section 4, according to Bayes’ rule, given a prior uniform over admissible distributions,
the sought posterior distributions result from integrals of aprobability monomialover a respective poly-
tope, with this monomial denoting the product of positive powers of sequences’ probabilities, with the
powers being the respective sequence multiplicities in the collection of examples. Probability monomials
are multilinear functions of the (nonfixed) moments.

Explicit restriction to these polytopes, in theory, quells the “moment problem”. However, as illustrated
in Section 5, perplexity may persist through their intricacy, which may retard the implementation of this
restriction. Section 6 is the starting point for the derivation of the main results, which are based upon a
more detailed formulation given therein.

The logarithm of probability monomials is shown to be negative semidefinite in Section 7. Orthogonal
projections may be employed, as necessary, to educe definiteness and, hence, a function whose unique
local optimum is also its global maximum, as described in Section 8. The towering of this maximum, for
samples of respectable size, triggers Laplace approximations for the Bayes integrals, described in Section
9. The integrand’s maximum point parameterizes a distribution comprising theposterior likelihoods: the
expected posterior probabilities (viz. Section 2). As a consequence of definiteness, convergence thither
is efficiently effected by maximizing each of a sequence of quadratic approximations to the logarithm
of a probability monomial, the latter by means of a quadratic program comprising the aforementioned
half-space constraints—whose number is typically exponential inn; as detailed in Section 10[19,22].
Implementations of the quadratic program exhibit low-degree-polynomial complexity in the number of
optimized parameters.
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