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Abstract

We give a survey of recent generalizations of orthogonal polynomials. That includes multidimensional (matrix and
vector orthogonal polynomials) and multivariate versions, multipole (orthogonal rational functions) variants, and
extensions of the orthogonality conditions (multiple orthogonality). Most of these generalizations are inspired by the
applications in which they are applied. We also give a glimpse of these applications, which are usually generalizations
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of applications where classical orthogonal polynomials also play a fundamental role: moment problems, numerical
quadrature, rational approximation, linear algebra, recurrence relations, and random matrices.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Since the fundamental work of Saepf8], orthogonal polynomials have been an essential tool in the
analysis of basic problems in mathematics and engineering. For example moment problems, numerical
gquadrature, rational and polynomial approximation and interpolation, linear algebra, and all the direct or
indirect applications of these techniques in engineering and applied problems, they are all indebted to the
basic properties of orthogonal polynomials.

Obviously, if we want to discussrthogonalpolynomials, the first thing we need is an inner product
defined on the space of polynomials. There are several formalizations of this concept. For example, one
can define a positive definite Hermitian linear functiomgl-] on the space of polynomials. This means
the following. LetlT, be the space of polynomials of degree at nehdIT the space of all polynomials.

The dual space offi, is I1,,, hamely the space of all linear functionals. With respect to a set of basis
functions{By, B1, ..., B,} that spanii, forn =0, 1, ..., a polynomial has a uniquely defined set of
coefficients, representing this polynomial. Thus, given a nested baBisveé can identify the space of
complex polynomiald7,, with the space of its coefficients, i.e., wit*tP*1 of complex(n + 1) x 1
column vectors.

Suppose the dual space is spanned by a sequence of basic linear fundgtigngls, thusIi,, =
spafLo, L1, ..., L,}forn=0,1,2, ... . Then the dual subspadg,. can be identified witlc1**+D,
the space of complex & (n + 1) row vectors. Now, given a sequence of linear functionalg ;2 ,, we
say that a sequence of polynomi@l 2 , with P, € II;, is orthonormal with respect to the sequence
of linear functionalg L }72 o with Ly € I, if

Liy(P)=0bn, k,1=0,1,2....

Hereby we have to assure some non-degeneracy, which means that the moment matrix of the system is
Hermitian positive definite. This moment matrix is defined as follows. Consider the Basis, . .. in
IT and a basid.g, L1, ... for the dual spacél.., then the moment matrix is the infinite matrix

moo mo1 moe2
mio mi1 miz ... .
M = mog mo1 Mmoo ... |° with miszi(Bj)-

It is Hermitian positive definite il = [m,-j]f’j:o is Hermitian positive definite forakk =0, 1, ... .

In some formal generalizations, positive definiteness may not be necessary; a nondegeneracy condition
is then sufficient (all the leading principal submatrices are nonsingular rather than positive definite). In
other applications it is not even really necessary to impose this nondegeneracy condition, and in that case
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