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Abstract

We investigate eigensolvers for computing a few of the smallest eigenvalues of a generalized eigenvalue prob-
lem resulting from the finite element discretization of the time independent Maxwell equation. Various multilevel
preconditioners are employed to improve the convergence and memory consumption of the Jacobi–Davidson algo-
rithm and of the locally optimal block preconditioned conjugate gradient (LOBPCG) method. We present numerical
results of very large eigenvalue problems originating from the design of resonant cavities of particle accelerators.
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1. Introduction

Many applications in electromagnetics require the computation of some of the eigenpairs of the curl–
curl operator,

curl µ−1
r curl e(x) − k2

0εre(x) = 0, div e(x) = 0, x ∈ Ω, (1.1)

in a bounded simply-connected, three-dimensional domainΩ with homogeneous boundary conditions
e × n = 0 posed on the connected boundary∂Ω . Here,εr andµr are the relative permittivity and per-
meability, respectively. Eq. (1.1) are obtained from the Maxwell equations after separation of the time
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and space variables and after elimination of the magnetic field intensity. Whileεr andµr are complex
numbers in problems from waveguide or laser design, in simulation of accelerator cavities the materials
can be assumed to be loss-free, thus admitting realεr andµr , whence all eigenvalues are real. In fact,
we will assumeεr = µr = 1. Thus, the discretization of (1.1) by finite elements leads to a real symmetric
generalized matrix eigenvalue problem

Ax = λMx, CTx = 0, (1.2)

whereA is positive semidefinite andM is positive definite. In this paper we consider eigensolvers for
computing a few, i.e., five to ten of the smallest eigenvalues and corresponding eigenvectors of (1.2)
as efficiently as possible with regard to execution time and consumption of memory space. In earlier
studies [1,2] we found the Jacobi–Davidson algorithm [28] and the locally optimal block preconditioned
conjugate gradient (LOBPCG) method [19] to be the most effective solvers for this task. We now have
incorporated a sophisticated multilevel preconditioner that is the combination of a hierarchical basis [4]
and a smoothed aggregation AMG preconditioner [30,26]. We review eigensolvers and preconditioners
and tell how we employ them in Sections 3 to 4. In Section 5 we report on experiments that we conducted
by means of problems originating in the design of the RF cavity of the 590 MeV ring cyclotron installed
at the Paul Scherrer Institute (PSI) in Villigen, Switzerland. These experiments indicate that the imple-
mented multilevel preconditioner is indeed optimal in that the number of iteration steps until convergence
only slightly depends on the problem size.

2. The application: The cavity eigenvalue problem

The finite element discretization is based on the weak formulation of (1.1) as suggested in [18]:

Find (λh, eh,ph) ∈ R × Nh × Lh such thateh �= 0 and

(a) (curl eh, curl �h) + (grad ph,�h) = λh(eh,�h), ∀�h ∈ Nh,

(b) (eh,grad qh) = 0, ∀qh ∈ Lh,
(2.1)

whereNh ⊂ H0(curl;Ω) = {v ∈ L2(Ω)3 | curl v ∈ L2(Ω)3,v × n = 0 on ∂Ω} and Lh ⊂ H 1
0 (Ω). In

order to avoid spurious modes we choose the subspacesNh andLh, respectively, to be the Nédélec (or
edge) elements [14,27] and the Lagrange (or node-based) finite elements [6] both of matching degree, in
our implementation of degree 2. Let{�i}ni=1 be a basis ofNh and{ϕl}ml=1 be a basis ofLh. Then (2.1)
defines the matrix eigenvalue problem[

A C

CT O
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= λ
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M O
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)
, (2.2)

respectively, whereA andM aren-by-n andC is n-by-m with elements

ai,j = (curl �i , curl �j ), mi,j = (�i ,�j ), ci,l = (�i ,grad ϕl).

Eq. (2.2) can equivalently be written in the form (1.2). The reason for approximating the electric fielde
by Nédélec elements and the Lagrange multipliers by Lagrange finite elements is that [14, §III.5.3]

grad Lh = {vh ∈ Nh | curl vh = 0}. (2.3)
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