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Abstract

Multirate methods make use of latency that occurs in electrical circuits to simulate more efficiently the transient
behaviour of networks: different stepsizes are used for subcircuits according to the different levels of activity. As
modelling is usually done by applying modified nodal analysis (MNA), the network equations are given by coupled
systems of stiff differential-algebraic equations. Following the idea of mixed multirate for ordinary differential
equations, a ROW-based 2-level multirate method is developed for index-1 DAEs arising in circuit simulation. To
obtain order conditions, P-series are generalised to MDA-series for partitioned DAE systems.
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1. Introduction

In full chip design it has to be verified whether the network design coincides with the functional de-
mands. To do so, modified nodal analysis (MNA) is commonly used in industrial applications to generate
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automatically network model equations from designer’s drafts: Kirchhoff’s current and voltage laws,
together with characteristic equations for each basic element based on a charge oriented description of
MOS-transistors, lead to stiff differential–algebraic equations (DAEs) of the following form:

A · ż = f (x)

0= z − q(x)
on t ∈ [t0, tend], x(t0) = x0, (1)

with x ∈ R
n denoting then unknown node potentials andf (x) ∈ R

n the currents produced by static
elements. The incidence matrixA ∈ {−1,0,1}n×m describes the network’s topology related to charge
storing elements (capacitances) and associates charge flowż = dq(x)/dt caused by these elements to the
static currentsf (x) at each node.

Electrical networks often consist of subcircuits which show largely differing levels of activity, i.e.,
the inner signals of some parts are characterized by a high level of activity while others tend to change
quite slowly. In terms of the mathematical model the network equations comprise of systems running on
different time scales. The basic idea ofMultirate methodsis to prevent parts to be integrated more often
than necessary to guarantee given error tolerances. Therefor latency is exploited to reduce computational
costs.

To take advantage of the multirate feature, the network model equations have to be split in an appro-
priate way. Since dynamic network elements are said to react slowly or fast we can suppose that two or
more nodes connected by such an element have the same level of activity at each time, i.e., regarding
the whole network there is no coupling between the latent and active part through capacities. Thus the
network equations (1) can be split into an active (subindexa) and latent (subindexl) part that are linked
only by the static currentsfl andfa via the coupling node potentialsxa andxl :

Al · żl = fl(xl, xa), Aa · ża = fa(xl, xa),

0= zl − ql(xl), 0= za − qa(xa). (2)

In the following we will assume that both networks are regular, i.e., they fulfill the following special
index 1 conditions:

Al · ∂ql/∂xl is smooth and regular along the solutionxl(t),

Aa · ∂qa/∂xa is smooth and regular along the solutionxa(t). (3)

We will show in this paper how the multirate idea for ordinary differential equations can be transfered to
differential–algebraic equations of type (2) and (3).

The paper is organised as follows: Starting from multirate schemes for ODE systems recapitulated
in Section 2, a mixed multirate method for the coupled system (2) of index-1 DAEs is introduced in
Section 3. Its order conditions are derived by generalising P-series to MDA-series theory in Section 4.
Details for MDAE23, an implementation of an embedded scheme with order 3(2), conclude this paper.

2. Multirate schemes for ODE systems

Before we state and investigate a multirate method for the coupled system (2) that treats both parts
with different stepsizes, we take a closer look at multirate schemes for coupled ODEs:

ẏL = fL(yL, yA), yL(t0) = yL,0, (4a)

ẏA = fA(yL, yA), yA(t0) = yA,0. (4b)
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