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Abstract

The purpose of this paper is to explore an alternative to the traditional interpolation based semi-Lagrangian time
integrators employed in atmospheric models. A novel aspect of the present study is that operator splitting is applied
to a purely hyperbolic problem rather than the incompressible Navier–Stokes equations. The underlying theory of
operator integration factor splitting is reviewed and the equivalence with semi-Lagrangian schemes is established.
A nonlinear variant of integration factor splitting is proposed where the advection operator is expressed in terms
of the relative vorticity and kinetic energy. To preserve stability, a fourth order Runge–Kutta scheme is applied for
sub-stepping. An analysisof splitting errors reveals that OIFS is compatiblewith the order conditions for linear
multi-step methods. The new scheme is implemented in a spectral element shallow water model using an implicit
second order backward differentiation formula for Coriolis and gravity wave terms. Numerical results for standard
test problems demonstrate that much larger time steps are possible.
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1. Introduction

The seminal work of Robert [25] led to a six-fold increase over the explicit time step for atmospheric
general circulation models. To achieve such dramatic gains without recourse to a fully implicit integrator,
a semi-Lagrangian treatment of advection was combined with a semi-implicit scheme for the stiff terms
responsible for gravity waves. Initially, semi-implicit semi-Lagrangian time-stepping was applied to hy-
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perbolic problems, discretized using low-order finite-differences and finite elements [30]. However, the
method was soon extended to global models based on the spectral transform [24]. The traditional semi-
Lagrangian algorithm implemented in atmospheric models relies on backward trajectory integration and
upstream interpolation. In effect, the numerical domain of dependence is shifted to an upstream grid cell
and, for advective CFL numbersC < 1 with linear interpolation, is equivalent to upwind finite differenc-
ing. Upwind schemes are known to be diffusive and thus cubic interpolation has been generally adopted
[29]. Indeed, McCalpin [20] has shown that high-degree polynomials are required in order to mitigate
the inherent numerical dissipation and dispersion errors associated with semi-Lagrangian advection.

Bartello and Thomas [2] analyzed the cost-effectiveness of the backward semi-Lagrangian scheme in
the context of geophysical flows. Their analysis was restricted to atmospheric models using low-order
finite differences and either 2D or 3D Lagrangian interpolants. In the enstrophy cascade of homogeneous
quasi-geostrophic turbulence, the authors concluded that high efficiency gains are possible over low-
order Eulerian integrators. However, the gains are at best marginal in the case of a 3D Kolmogorov
energy cascade. The cascade interpolation procedures of Purser and Leslie [22] and Nair et al. [21]
reduce the computational complexity fromO(Nd) to O(N) per grid point, whereN is the degree of the
interpolating polynomial ind space dimensions. The order of accuracy of these methods has not been
formally established. Nevertheless, the time scale separation between Lagrangian and Eulerian frames
is more restrictive for small-scale atmospheric dynamics whenE(k) ∼ k−5/3 and the semi-Lagrangian
scheme is only cost-effective at very high spatial resolutions.

The combination of the semi-Lagrangian approach together with a high-order spectral element space
discretization, applied to the advection–diffusion equation, is described in Giraldo [13]. An important
result of this study is that numerical dissipation and dispersion errors for the combined scheme are com-
pletely eliminated for polynomial orderN � 4. More recently, Giraldo et al. [14] reported numerical
results for a semi-Lagrangian semi-implicit shallow water model. Extension of the scheme to the hydro-
static primitive equations is discussed in Giraldo and Rosmond [15]. Motivated by the efficiency gains
for advection–diffusion, Xiu and Karniadakis [34]applied a semi-Lagrangianspectral element (SESL)
method to the incompressible Navier–Stokes equations. For laminar and transitional flows, they observed
efficiency gains ranging from four to ten times over an Eulerian SE scheme. Xu et al. [36] simulated
turbulent channel flow using a mixed spectral discretization. A ten-fold increase in the time-step was ob-
tained, but only at the break-even point in computational efficiency due to the use of global interpolants.
These results also confirm the error analysis of Falcone and Ferretti [10], who show that the overall error
is not monotonic and can actually decrease as the time step increases for a particular choice of the spatial
resolution.

In high-order methods, the computational cost of upstream interpolation for anN th order discretiza-
tion in d space dimensions isO(Nd) per degree of freedom. Given a spectral element discretization
consisting ofK elements of orderN , there areKNd grid points and the total interpolation cost is
O(KN2d). By comparison, the cost of Eulerian operator evaluations scales asO(KNd+1). For example,
advection of a scalar requiresdKNd+1 operations [11]. A potentially lower cost alternative to interpo-
lation is the operator integrating factor splitting (OIFS) method of Maday et al. [19] which relies on
Eulerian sub-stepping of the advection equation. If the total number of sub-steps per time step is less
thanNd−1, then OIFS should be more efficient. Boyd [4] observed that both semi-Lagrangian and OIFS
algorithms are members of a broader class of integration factor methods.

There are several motivations for our evaluation of integration factor methods in the context of spec-
tral elements applied to geophysical flows. The advective CFL number scales asO(N−2) and is more
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