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Bicritical domination
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Abstract

A graph G is domination bicritical if the removal of any pair of vertices decreases the domination
number. Properties of bicritical graphs are studied. We show that a connected bicritical graph has
domination number at least 3, minimum degree at least 3, and edge-connectivity at least 2. Ways of
constructing a bicritical graph from smaller bicritical graphs are presented.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

For many graph parameters, criticality is a fundamental issue. Much has been written
about graphs for which a parameter (such as connectedness or chromatic number) increases
or decreases whenever an edge or vertex is removed or added. For domination number,
Brigham et al. [2] began the study of graphs where the domination number decreases on
the removal of any vertex. Further properties of these graphs were explored in [2,3,5], but
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they have not been characterized. Other types of domination critical graphs have also been
studied, for example, see [4,9–12].

In this paper, we introduce and study those graphs where the domination number decreases
on the removal of any set of k vertices. Recall that for a graph G = (V , E), the open
neighborhood of a vertex v ∈ V is N(v) = {x ∈ V | vx ∈ E}. The closed neighborhood
is N [v] = N(v) ∪ {v}. A set S ⊂ V is a dominating set if every vertex in V is either in
S or is adjacent to a vertex in S, that is, V = ⋃

s∈S N [s]. The domination number �(G)

is the minimum cardinality of a dominating set of G, and a dominating set of minimum
cardinality is called a �(G)-set. For a set S, a vertex v is a private neighbor of u (with
respect to S) if N [v] ∩ S = {u}; and the private neighbor set of u, with respect to S, is the
set pn[u, S]= {v |N [v]∩S ={u}}. We denote the subgraph induced by S in G by G[S]. We
denote the distance between two vertices x and y in G by dG(x, y). For a detailed discussion
of domination and for notation not defined here, see [6,7].

Note that removing a vertex can increase the domination number by more than one, but
can decrease it by at most one. It is useful to write the vertex set of a graph as a disjoint
union of three sets according to how their removal affects �(G). Let V (G)=V 0 ∪V + ∪V −
where

V 0 = {v ∈ V | �(G − v) = �(G)},
V + = {v ∈ V | �(G − v) > �(G)},

and

V − = {v ∈ V | �(G − v) < �(G)}.
It is possible for a single graph to have all of the sets V 0, V −, and V + nonempty. For

example, if k�3 and T is the tree obtained from a star K1,k with center u by subdividing
an edge uw of this star once, then V + = {u}, V − = {w}, and V 0 = V (T ) − {u, w}.

Brigham et al. [2] defined a vertex v to be critical if v ∈ V −, and a graph G to be
domination critical if every vertex of G is critical. A generalization of this concept was
presented in [8]. Here we consider a different generalization. We define a graph G to be
(�, k)-critical, if �(G − S) < �(G) for any set S of k vertices. Obviously, a (�, k)-critical
graph G has �(G)�2. For instance, Kn is (�, k)-critical for all k�n− 1. The (�, 1)-critical
graphs are precisely the domination critical graphs introduced by Brigham, Chinn, and
Dutton. In the special case of k=2, we say that G is domination bicritical, or just bicritical.

In this paper, we call a graph critical (respectively, bicritical) if it is domination critical
(respectively, domination bicritical). Further, we call a graph �-critical (respectively, �-
bicritical) if it is domination critical (respectively, �-bicritical) with domination number �.
For example, the self-complementary Cartesian product G = K3�K3, where �(G) = 3, is
3-critical and 3-bicritical, since removing any vertex or any pair of vertices decreases the
domination number. However, critical graphs are not necessarily bicritical. For instance,
the cycles Cn for n ≡ 1(mod 3) are critical, but not bicritical. On the other hand, bicritical
graphs are not necessarily critical. For example, the graph H formed from the Cartesian
product K3�K3 (where the vertices of the ith copy of K3 are labelled vij for 1�j �3) by
adding a new vertex x adjacent to v11, v12, v23, and v33 is bicritical and not critical (since
x ∈ V 0).
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