

Available online at www.sciencedirect.com

Discrete Mathematics 305 (2005) 18-32

www.elsevier.com/locate/disc

Bicritical domination

Robert C. Brigham^a, Teresa W. Haynes^b, Michael A. Henning^{c, 1}, Douglas F. Rall^d

^aDepartment of Mathematics, University of Central Florida, Orlando, FL 32816, USA ^bDepartment of Mathematics, East Tennessee State University, Johnson City, TN 37614-0002, USA ^cSchool of Mathematical Sciences, University of KwaZulu-Natal, Pietermaritzburg Campus, 3209, South Africa ^dDepartment of Mathematics, Furman University, Greenville, SC 29613, USA

Received 24 April 2003; received in revised form 17 March 2005; accepted 2 August 2005

Abstract

A graph *G* is domination bicritical if the removal of any pair of vertices decreases the domination number. Properties of bicritical graphs are studied. We show that a connected bicritical graph has domination number at least 3, minimum degree at least 3, and edge-connectivity at least 2. Ways of constructing a bicritical graph from smaller bicritical graphs are presented. © 2005 Elsevier B.V. All rights reserved.

Keywords: Domination; Vertex critical domination; Vertex bicritical domination; Bounds; Diameter

1. Introduction

For many graph parameters, criticality is a fundamental issue. Much has been written about graphs for which a parameter (such as connectedness or chromatic number) increases or decreases whenever an edge or vertex is removed or added. For domination number, Brigham et al. [2] began the study of graphs where the domination number decreases on the removal of any vertex. Further properties of these graphs were explored in [2,3,5], but

E-mail address: haynes@mail.etsu.edu (T.W. Haynes).

¹ Research supported in part by the University of KwaZulu-Natal and the South African National Research Foundation.

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2005.09.013

they have not been characterized. Other types of domination critical graphs have also been studied, for example, see [4,9-12].

In this paper, we introduce and study those graphs where the domination number decreases on the removal of any set of k vertices. Recall that for a graph G = (V, E), the open neighborhood of a vertex $v \in V$ is $N(v) = \{x \in V | vx \in E\}$. The closed neighborhood is $N[v] = N(v) \cup \{v\}$. A set $S \subset V$ is a dominating set if every vertex in V is either in S or is adjacent to a vertex in S, that is, $V = \bigcup_{s \in S} N[s]$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G, and a dominating set of minimum cardinality is called a $\gamma(G)$ -set. For a set S, a vertex v is a private neighbor of u (with respect to S) if $N[v] \cap S = \{u\}$. We denote the subgraph induced by S in G by G[S]. We denote the distance between two vertices x and y in G by $d_G(x, y)$. For a detailed discussion of domination and for notation not defined here, see [6,7].

Note that removing a vertex can increase the domination number by more than one, but can decrease it by at most one. It is useful to write the vertex set of a graph as a disjoint union of three sets according to how their removal affects $\gamma(G)$. Let $V(G) = V^0 \cup V^+ \cup V^-$ where

$$V^{0} = \{ v \in V \mid \gamma(G - v) = \gamma(G) \},\$$

$$V^{+} = \{ v \in V \mid \gamma(G - v) > \gamma(G) \},\$$

and

$$V^{-} = \{ v \in V \mid \gamma(G - v) < \gamma(G) \}.$$

It is possible for a single graph to have all of the sets V^0 , V^- , and V^+ nonempty. For example, if $k \ge 3$ and *T* is the tree obtained from a star $K_{1,k}$ with center *u* by subdividing an edge *uw* of this star once, then $V^+ = \{u\}$, $V^- = \{w\}$, and $V^0 = V(T) - \{u, w\}$.

Brigham et al. [2] defined a vertex v to be *critical* if $v \in V^-$, and a graph G to be *domination critical* if every vertex of G is critical. A generalization of this concept was presented in [8]. Here we consider a different generalization. We define a graph G to be (γ, k) -critical, if $\gamma(G - S) < \gamma(G)$ for any set S of k vertices. Obviously, a (γ, k) -critical graph G has $\gamma(G) \ge 2$. For instance, \overline{K}_n is (γ, k) -critical for all $k \le n - 1$. The $(\gamma, 1)$ -critical graphs are precisely the domination critical graphs introduced by Brigham, Chinn, and Dutton. In the special case of k = 2, we say that G is *domination bicritical*, or just *bicritical*.

In this paper, we call a graph *critical* (respectively, *bicritical*) if it is domination critical (respectively, domination bicritical). Further, we call a graph γ -critical (respectively, γ -bicritical) if it is domination critical (respectively, γ -bicritical) with domination number γ . For example, the self-complementary Cartesian product $G = K_3 \Box K_3$, where $\gamma(G) = 3$, is 3-critical and 3-bicritical, since removing any vertex or any pair of vertices decreases the domination number. However, critical graphs are not necessarily bicritical. For instance, the cycles C_n for $n \equiv 1 \pmod{3}$ are critical. For example, the graph *H* formed from the Cartesian product $K_3 \Box K_3$ (where the vertices of the *i*th copy of K_3 are labelled v_{ij} for $1 \le j \le 3$) by adding a new vertex *x* adjacent to v_{11} , v_{12} , v_{23} , and v_{33} is bicritical and not critical (since $x \in V^0$).

Download English Version:

https://daneshyari.com/en/article/9512121

Download Persian Version:

https://daneshyari.com/article/9512121

Daneshyari.com