

Available online at www.sciencedirect.com

Discrete Mathematics 305 (2005) 394-399

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note

On T-set of T-colorings

Yongqiang Zhao^{a,*}, Wenjie He^b

^aDepartment of Mathematics, Shijiazhuang College, Shijiazhuang 050801, PR China ^bApplied Mathematics Institute, Hebei University of Technology, Tianjin 300130, PR China

Received 21 July 2003; accepted 29 September 2005

Abstract

Let \mathscr{G} be the collection of sets *T* such that the greedy algorithm obtains the optimal *T*-span of K_n for all $n \ge 1$, \mathscr{E} the collection of sets *T* such that $sp_T(G) = sp_T(K_{\chi(G)})$ is true for all graphs *G*. Many families in \mathscr{G} or \mathscr{E} have been discovered. We know that *r*-initial set and *k* multiple of *s* set are all in $\mathscr{G} \cap \mathscr{E}$. Liu (*T*-colorings of graphs, Discrete Math. 10 (1992), 203–212) extended *k* multiple of *s* set by union with another set *S'*. In this paper, we continue to study the *T*-set in \mathscr{G} and \mathscr{E} , extending some *T*-sets by the similar way.

© 2005 Published by Elsevier B.V.

Keywords: T-coloring; T-graph; Span; Recursive clique

1. Introduction

T-colorings were introduced by Hale [1] in connection with the channel assignment problem in communications. In this problem, there are some transmitters in a region. We wish to assign to each transmitter a frequency and avoid the interference. The interference occurs when the difference of channels used by the transmitters falls in the given interference set T.

Given a set T of non-negative integers and T contains 0, a T-coloring of a simple graph G is a function f from V(G) to the set of non-negative integers such that if $\{u, v\} \in E(G)$ then $|f(u) - f(v)| \notin T$. The T-span of a T-coloring f, denoted by $sp_T(f)$, is

^{*} Corresponding author. Department of Mathematics, Shijiazhuang Normal College, Shijiazhuang 050801, PR China.

E-mail addresses: yqzhao@sina.com (Y. Zhao), he_wenjie@eyou.com (W. He).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2005 Published by Elsevier B.V. doi:10.1016/j.disc.2005.09.004

 $\max\{|f(u) - f(v)|, u, v \in V(G)\}$. The *T*-span of *G*, denoted by $sp_T(G)$, is the minimum *T*-span over all *T*-colorings of *G*.

Let K_n be the complete graph with *n* vertices. For a given *T*, the greedy *T*-algorithm on K_n colors vertices of K_n sequentially. At each step, it uses the smallest possible number that will not violate the definition of a *T*-coloring. But the greedy algorithm does not always provide the optimal *T*-span. Let \mathscr{G} be the collection of sets *T*, such that the greedy algorithm introduced above obtains the optimal *T*-span of K_n for all $n \ge 1$. On the other hand, It is well known that $sp_T(G) \le sp_T(K_{\chi(G)})$ for any *T* and *G*, where $\chi(G)$ is the chromatic number of *G*. So it is interesting to check when the equality holds. We define \mathscr{E} to be the collection of sets *T*, such that $sp_T(G) = sp_T(K_{\chi(G)})$ is true for all graphs *G*.

Given T, the T-graph denoted by G_T was defined by Liu [2] as follows:

$$V(G_T) = \{0, 1, 2, \ldots\}, \quad \{a, b\} \in E(G_T) \iff |a - b| \notin T.$$

The *T*-graph of order *n*, denoted by G_T^n is the subgraph of G_T induced by the first *n* vertices. In G_T , the recursive clique of size *i*, denoted by RK_i , is the clique with vertex set defined by $V(RK_1) = \{0\}$, and for $m \ge 2$, $V(RK_m) = V(RK_{m-1}) \cup \{x\}$ where *x* is the vertex with the smallest index adjacent to all vertices of $V(RK_{m-1})$.

Throughout this paper, let Z^+ denote the set of positive integers. For any two integers a and b with $a \leq b$, let [a, b] denote the set $\{a, a + 1, a + 2, ..., b\}$. Many families in \mathscr{G} or in \mathscr{E} have been discovered. We know that *r*-initial set and *k* multiple of *s* set are all in $\mathscr{G} \cap \mathscr{E}$. Liu [2] extended *k* multiple of *s* set by union with another set *S'*. In Section 2, we list some previous results. In Section 3, we extend the *T*-sets in Section 2 with a similar way.

The following characterizations of \mathscr{G} and \mathscr{E} , provided by Liu [3], are very useful.

Theorem 1.1 (*Liu* [3]). For any T and any positive integer m, $sp_T(K_m) = n - 1$ if and only if n is the minimum number such that $\omega(G_T^n) = m$.

Theorem 1.2 (*Liu* [3]). Given $T, T \in \mathcal{G}$ if and only if for all $n \in Z^+$, the maximum recursive clique in G_T^n is a maximum clique.

Theorem 1.3 (*Liu* [3]). For any $T, T \in \mathscr{E}$ if and only if $\omega(G_T^n) = \chi(G_T^n)$ for all $n \in Z^+$.

2. Previous results

In this section, we list here the previous results that will be extended in Section 3.

Theorem 2.1 (*Tesman* [4]). If $T = \{0\} \cup [s, l]$, where $s, l \in Z^+$, then $T \in \mathcal{G}$. Furthermore, if m = ks + b with $k \in Z^+ \cup \{0\}$ and $1 \le b \le s$, then $sp_T(K_m) = k(l+s) + b - 1$.

Theorem 2.2 (*Liu* [3]). If $T = \{0\} \cup [s, l]$, where $s, l \in Z^+$, $T \in \mathscr{E}$ if and only if l = ms for some $m \in Z^+$.

Download English Version:

https://daneshyari.com/en/article/9512152

Download Persian Version:

https://daneshyari.com/article/9512152

Daneshyari.com