

Available online at www.sciencedirect.com

Discrete Mathematics 294 (2005) 147-160

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Distance-*j* ovoids and related structures in generalized polygons

Alan Offer, Hendrik Van Maldeghem

Department of Pure Mathematics and Computer Algebra, Ghent University, Galglaan 2, B 9000 Ghent, Belgium

Received 21 March 2003; received in revised form 26 August 2003; accepted 29 April 2004 Available online 4 March 2005

Abstract

Given a finite weak generalized polygon Γ with an order (s, t), we provide necessary conditions on the order for Γ to admit a distance-*j* ovoid with odd *j*. This leads to the introduction and study of similar structures involving flags, which we name *floveads*. © 2005 Elsevier B.V. All rights reserved.

MSC: 51E12; 51E20

Keywords: Generalized polygon; Ovoid; Spread; Flovead

1. Introduction

A weak generalized *n*-gon is a geometry $\Gamma = (\mathcal{P}, \mathcal{L}, I)$ of points and lines whose incidence graph has diameter *n* and girth 2*n*. If each line of Γ is incident with exactly s + 1points and each point is incident with exactly t + 1 lines, then Γ has order (s, t), and if s = t then we may also say that Γ has order *s*. If both $s, t \ge 2$ then Γ is a generalized *n*-gon. By Feit and Higman [4], apart from ordinary *n*-gons, finite weak generalized *n*-gons with n > 2 and having an order (s, t) can exist only for $n \in \{3, 4, 6, 8, 12\}$, and if n = 12 then either s = 1 or t = 1.

E-mail addresses: aoffer@cage.UGent.be (A. Offer), hvm@cage.UGent.be (H. Van Maldeghem).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2004.04.044

The distance $\delta(u, v)$ between two elements u and v of Γ is the distance between them in the incidence graph. In particular, the value of $\delta(u, v)$ is at most n, the diameter of the incidence graph, and when $\delta(u, v) = n$ we say the elements u and v are *opposite*. For an element u of Γ , the set of elements at distance d from u is denoted $\Gamma_d(u)$. The sizes of the sets $\Gamma_d(u)$, \mathscr{P} and \mathscr{L} are given in [13, Lemma 1.5.4]. In particular, we will use $|\Gamma_{2i}(p)| = s^i t^{i-1}(t+1)$, where p is a point and 0 < 2i < n, and $|\mathscr{P}| = (1+s)(1+st+s^2t^2+\cdots+s^{m-1}t^{m-1})$, when n = 2m is even.

The dual Γ^D of a weak generalized *n*-gon $\Gamma = (\mathscr{P}, \mathscr{L}, \mathbf{I})$ is the incidence structure $\Gamma^D = (\mathscr{L}, \mathscr{P}, \mathbf{I})$ obtained by interchanging the roles of points and lines. The dual Γ^D is then also a weak generalized *n*-gon, and if Γ has order (s, t) then Γ^D has order (t, s).

The *double* 2Γ of a weak generalized *n*-gon $\Gamma = (\mathcal{P}, \mathcal{L}, I)$ is the incidence structure obtained by taking as points the points and lines of Γ , and as lines the flags $\{p, L\}, p \in \mathcal{P}, L \in \mathcal{L}, \text{ of } \Gamma$, with incidence being symmetrized inclusion. This is really just the incidence graph of Γ with vertices and edges considered as points and lines. The double 2Γ is a weak generalized 2n-gon, and if Γ has order *s* then 2Γ has order (1, s). In fact, every finite weak generalized 2n-gon with order (1, s) arises as the double of a weak generalized *n*-gon of order *s* ([12], see also [13, 1.6.2]).

Let Γ be a weak generalized *n*-gon. For $1 \le j \le n/2$, a *distance-j ovoid* is a set \mathcal{O} of points such that any two points of \mathcal{O} are at least distance 2j apart and such that for every element p of Γ there is some element $q \in \mathcal{O}$ with $\delta(p, q) \le j$. The dual notion is that of a *distance-j spread*. When j = n/2, we speak simply of *ovoids* and *spreads*.

There are several factors that motivate the study of distance-*j* ovoids in finite weak generalized *n*-gons. For instance, they give rise to perfect codes when *j* is odd (see [2]), and they are related to epimorphisms from *n*-gons to *m*-gons with $n \neq m$ (see [5,6]). They also have relationships with such objects as 1-systems, semipartial geometries and strongly regular graphs (see [9]).

In Section 2, we give necessary conditions for the existence of certain distance-*j* ovoids.

2. Distance-j ovoids

In [10], it is shown that a finite weak generalized hexagon Γ of order (s, t) can have an ovoid \mathcal{O} only if s = t. This is done there by a double counting argument, first by counting the points that lie in 'neighbourhoods' of the points of \mathcal{O} and then by fixing a point p of \mathcal{O} and counting the other points of \mathcal{O} according to their positions relative to p. Applying this same idea to distance-j ovoids in other finite weak generalized 2m-gons with an order (s, t) tells us nothing new when j is even as the two counts result in the same expression, but we do get restrictions on the order when j is odd. That is to say, in light of Feit and Higman [4], that this approach yields results when (j, m) is (3, 3), (3, 4), (3, 6) or (5, 6). As the first of these cases is treated by [10], here we treat the remaining ones and so prove the following theorem.

Theorem 1. If a finite weak generalized octagon of order (s, t) admits a distance-3 ovoid then s = 2t. If a finite weak generalized dodecagon of order (s, t) admits a distance-3 ovoid then (s, t) is either (1, 1) or (3, 1). No finite weak generalized dodecagon with an order (s, t) has a distance-5 ovoid.

Download English Version:

https://daneshyari.com/en/article/9512445

Download Persian Version:

https://daneshyari.com/article/9512445

Daneshyari.com