

Available online at www.sciencedirect.com

Discrete Mathematics 300 (2005) 245-255

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note

Various inverses of a strong endomorphism of a graph

Weimin Li

Department of Mathematics, Shanghai Jiaotong University, 200240 Shanghai, PR China

Received 18 September 2003; received in revised form 5 December 2004; accepted 6 January 2005 Available online 26 August 2005

Abstract

In this paper, we first give a characterization of a completely regular strong endomorphism of a graph. Then we explicitly exhibit its various inverses. The enumerations of them are also derived. © 2005 Elsevier B.V. All rights reserved.

Keywords: Graph; Strong endomorphism; Inverse

1. Introduction

As one of the most important semigroups associated with a graph, the endomorphism monoid of a graph, in particular, the strong endomorphism monoid of a graph, has received attention in the literature in recent years. For a survey see [6,2]. The aim of the researches in this line lies in establishing the connection between semigroup theory and graph theory, especially, in the applications of the former to the latter.

For a concrete semigroup, it seems always significant to be concerned with taking abstract semigroup concepts and describing them in this concrete semigroup. My writing this paper is motivated by a problem posed to me by Professor T. E. Hall (Monash University, Australia): How can the inverses of a strong endomorphism of a graph be described?

It is well known that in the theory of semigroups, an idea of great importance is that of an inverse associated with a regular element [1, p. 45]. In [4], the inverses of a regular endomorphism of a graph were investigated. In [2,3], it was proved that for any finite graph G, sEnd(G), the monoid of the strong endomorphisms of G, is always regular. So, every

E-mail address: liyangc@online.sh.cn.

⁰⁰¹²⁻³⁶⁵X/ $\$ - see front matter $\$ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2005.01.007

strong endomorphism of G possesses pseudo-inverses as well as inverses. A concept stronger than regularity in the semigroup theory is that of complete regularity. Every completely regular element of a semigroup has a commuting inverse and, of course, a commuting pseudo-inverse [5, Theorem II.6.7].

In this paper, we first give a characterization of a completely regular strong endomorphism of a graph. Then, we explicitly exhibit the pseudo-inverses and inverses of a strong endomorphism of a graph, as well as commuting pseudo-inverses and commuting inverses of a completely regular strong endomorphism of a graph, by which the enumerations of them are also derived.

In this paper, only finite undirected graphs without loops and multiple edges are considered. If G is a graph, we denote by V(G) (or just G) and E(G) its vertex set and edge set, respectively. A graph H is called a *subgraph* of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. Moreover, if for any $a, b \in V(H)$, $\{a, b\} \in E(H)$ if and only if $\{a, b\} \in E(G)$, then we call H an induced (strong) subgraph of G. For graphs G and H, a mapping $f: V(G) \to V(H)$ is called a *homomorphism* from G to H if $\{a, b\} \in E(G)$ implies that $\{f(a), f(b)\} \in E(H)$ for any $a, b \in G$. Moreover, if f is bijective and its inverse mapping is also a homomorphism (from H to G), then f is called an *isomorphism* from G to H. An *endomorphism* of G is a homomorphism from G to itself. An endomorphism is called a strong endomorphism if $\{f(a), f(b)\} \in E(G)$ implies that $\{a, b\} \in E(G)$ for any $a, b \in G$. A bijective endomorphism of a graph G is called an *automorphism* of G. Evidently, an automorphism of a graph G is an isomorphism from G to itself. By End(G), sEnd(G) and Aut(G) denote the set of endomorphisms, strong endomorphisms and automorphisms of the graph G, respectively. Obviously, $\operatorname{Aut}(G) \subseteq \operatorname{sEnd}(G) \subseteq \operatorname{End}(G)$. It is well-known that $\operatorname{End}(G)$ and $\operatorname{sEnd}(G)$ are monoids (a *monoid* is a semigroup with an identity element) and that Aut(G) is a group with respect to the composition of mappings. We denote an endomorphism f in the obvious sense as, e.g., $f = \begin{pmatrix} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix}$. Let *G* be a graph and let $A \subseteq V(G)$. Let $f \in \text{sEnd}(G)$ and let $a \in G$. We will denote $f^{-1}(a) := \{x \in G | f(x) = a\}, f(A) := \{f(x) | x \in A\}$ and $f^{-1}(A) := \bigcup_{x \in A} f^{-1}(x)$. By $f|_A$ we denote the restriction of f on A.

The following notions are important in this paper: Let $f \in \text{sEnd}(G)$, and by S_f we denote the induced subgraph of G with $V(S_f) = f(V(G))$; by ρ_f we denote the relation on V(G) induced by f, namely, for any $a, b \in V(G)$, $(a, b) \in \rho_f$ if and only if f(a) = f(b). For a vertex $a \in G$, we put $N(a) = \{x \in G | \{a, x\} \in E(G)\}$ (the *neighborhood* of a in G). The relation τ on V(G) is defined by the rule that $(a, b) \in \tau$ if and only if N(a) = N(b). Clearly, the relations τ and ρ_f are equivalence relations on V(G). By $[x]_{\tau}$ (resp. $[x]_{\rho_f}$) we denote the equivalence class of the vertex x of graph G with respect to τ (resp. ρ_f).

Let *S* be a semigroup. An *idempotent* is an element *a* of *S* such that $a^2 = a$. An element *a* of *S* is said to be *regular* if there exists *x* in *S* such that axa = a. In this case, the element *x* is called a *pseudo-inverse* of *a* [2]. Furthermore, if xax = x is also true, then *x* is called an *inverse* of *a* [1]. A semigroup is said to be *regular* if all its elements are regular [1]. An element *a* of a semigroup *S* is called *completely regular* if there exists an element *x* in *S* such that axa = a and xa = ax [1,5]. If this is the case, we call the element *x* a *commuting pseudo-inverse* of *a*. Moreover, if xax = x also holds, then *x* is called a *commuting inverse* of *a*. Define a relation \mathscr{L} on *S* such that $(a, b) \in \mathscr{L}$ if and only if $S^1a = S^1b$. Similarly, define a relation \mathscr{R} on *S* such that $(a, b) \in \mathscr{R}$ if and only if $aS^1 = bS^1$. Define $\mathscr{H} = \mathscr{L} \cap \mathscr{R}$.

Download English Version:

https://daneshyari.com/en/article/9513136

Download Persian Version:

https://daneshyari.com/article/9513136

Daneshyari.com