

Available online at www.sciencedirect.com

Discrete Mathematics 292 (2005) 107-117

www.elsevier.com/locate/disc

Ramsey numbers of stars versus wheels of similar sizes

Aleksandra Korolova

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 19 October 2003; received in revised form 29 November 2004; accepted 16 December 2004

Abstract

We study the Ramsey number $R(W_m, S_n)$ for a star S_n on n vertices and a wheel W_m on m+1 vertices. We show that the Ramsey number $R(W_m, S_n) = 3n-2$ for n=m, m+1, and m+2, where $m \ge 7$ and odd. In addition, we give the following lower bound for $R(W_m, S_n)$ where m is even: $R(W_m, S_n) \ge 2n+1$ for all $n \ge m \ge 6$.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Ramsey number; Star; Wheel

1. Introduction

For two graphs G and H, the Ramsey number R(G, H) is the smallest positive integer r such that for every graph F on r vertices, F contains G as a subgraph or the complement of F contains H as a subgraph.

In this paper, we study the Ramsey number $R(W_m, S_n)$ of wheels versus stars. A wheel W_m is the graph on m+1 vertices obtained from a cycle C_m on m vertices by adding one vertex o, called the *hub* of the wheel, and making o adjacent to all vertices of C_m , called the *rim* of the wheel. A *star* S_n is the graph on n vertices with one vertex of degree n-1, called the *center*, and n-1 vertices of degree 1.

It was shown in [5] by Surahmat et al. that $R(W_m, S_n) = 3n - 2$ for $n \ge 2m - 4$, where $m \ge 5$ and odd. It was also shown in [4] that $R(W_4, S_n) = 2n - 1$ if $n \ge 3$ and odd, $R(W_4, S_n) = 2n + 1$ if $n \ge 4$ and even, and $R(W_5, S_n) = 3n - 2$ for each $n \ge 3$. Baskoro et al. have also shown

E-mail address: korolova@alum.mit.edu.

in [1] that $R(W_4, T_n) = 2n - 1$ for $n \ge 4$ and $R(W_5, T_n) = 3n - 2$ for $n \ge 3$ for any tree T_n on n vertices that is not a star.

In this paper we prove that $R(W_m, S_n) = 3n - 2$ for n = m, m + 1, and m + 2, where $m \ge 7$ and odd. In particular, this completes the calculation that $R(W_7, S_n) = 3n - 2$ for each $n \ge 7$. In addition, we give the following lower bound: $R(W_m, S_n) \ge 2n + 1$ for all $n \ge m \ge 6$ and m even.

2. Background

Let G be a graph with vertex set V(G) and edge set E(G). For $v \in V(G)$ and $B \subset V(G)$, define $N_B(v) = \{y \in B : vy \in E(G)\}$. Define the *degree of v with respect to B* to be $|N_B(v)|$ and denote it by $\mathcal{D}_B(v)$. If B consists of the entire vertex set of the graph G (i.e. B = V(G)), we use the conventional $d_G(v)$ instead of $\mathcal{D}_{V(G)}(v)$.

Let \overline{G} denote the complement of G, i.e. the graph obtained from the complete graph on the vertices of G by deleting the edges of G.

Chvátal and Harary [2] established the following lower bound for Ramsey numbers:

$$R(G, H) \ge (\mathcal{X}(G) - 1) \cdot (c(H) - 1) + 1$$
,

where $\mathcal{X}(G)$ is the chromatic number of G and c(H) is the number of vertices in the largest connected component of H.

Corollary 1.
$$R(W_{2k+1}, S_n) \ge 3n - 2$$
 for $n \ge 2k + 1$.

The inequality follows directly from the Chvátal and Harary bound and the facts that $\mathcal{X}(W_{2k+1}) = 4$ and $c(S_n) = n$.

Corollary 2.
$$R(W_{2k}, S_n) \ge 2n - 1$$
 for $n \ge 2k$.

The inequality here follows directly from the Chvátal and Harary bound and the facts that $\mathcal{X}(W_{2k}) = 3$ and $c(S_n) = n$.

The following well-known theorem [3] is useful throughout the paper:

Dirac's Theorem. Every graph with $n \ge 3$ vertices and minimum degree at least n/2 has a Hamiltonian cycle.

3.
$$R(W_n, S_n) = 3n - 2$$
 when *n* is odd

Theorem 3.
$$R(W_{2k+1}, S_{2k+1}) = 6k + 1$$
 for $k \ge 3$.

Proof. Corollary 1 yields $R(W_{2k+1}, S_{2k+1}) \ge 3 \cdot (2k+1) - 2 = 6k+1$. Therefore, it suffices to prove that $R(W_{2k+1}, S_{2k+1}) \le 6k+1$.

Download English Version:

https://daneshyari.com/en/article/9513552

Download Persian Version:

https://daneshyari.com/article/9513552

Daneshyari.com