Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On partitions of $K_{2,3}$ -free graphs under degree constraints*

Jianfeng Hou^a, Huawen Ma^{a,*}, Jiguo Yu^b, Xia Zhang^c

^a Center for Discrete Mathematics, Fuzhou University, Fujian, 350003, China

^b School of Information Science and Engineering, Qufu Normal University, Shandong, 276826, China

^c School of Mathematics and Statistics, Shandong Normal University, Shandong, 250014, China

ARTICLE INFO

Article history: Received 23 March 2018 Received in revised form 16 August 2018 Accepted 18 August 2018

*Keywords: K*_{2,3}-free graphs Feasible partition Satisfactory Degeneracy

ABSTRACT

Suppose that *s*, *t* are two positive integers, and \mathscr{H} is a set of graphs. Let $g(s, t; \mathscr{H})$ be the least integer *g* such that any \mathscr{H} -free graph with minimum degree at least *g* can be partitioned into two sets which induced subgraphs have minimum degree at least *s* and *t*, respectively. For a given graph *H*, we simply write g(s, t; H) for $g(s, t; \mathscr{H})$ when $\mathscr{H} = \{H\}$. In this paper, we show that if *s*, $t \ge 2$, then $g(s, t; K_{2,3}) \le s + t$ and $g(s, t; \{K_3, C_8, K_{2,3}\}) \le s + t - 1$. Moreover, if \mathscr{H} is the set of graphs obtained by connecting a single vertex to exactly two vertices of $K_4 - e$, then $g(s, t; \mathscr{H}) \le s + t$ on \mathscr{H} -free graphs with at least five vertices, which generalize a result of Liu and Xu (2017).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Graph partitioning problems came from the well-known *Max-Cut Problem*: Given a graph *G*, find a maximum bipartite subgraph of *G*. A simple average argument shows that every graph with *m* edges has a bipartite subgraph with at least m/2 edges. In 1973, answering a question of Erdős, Edwards [4,5] improved this lower bound to $m/2 + (\sqrt{2m + 1/4} - 1/2)/4$, which is essentially best possible as evidenced by complete graphs with odd orders. For more references concerning partitions of graphs or hypergraphs, see [1,2,6–10,15,18,19].

Another direction of graph partitioning is to partition graphs under some degree constraints. An example given by Lovász [13] in 1966, shows us that every graph with maximum degree at most s + t + 1 admits a bipartition which induced subgraphs have maximum degree at most s and t, respectively. For graphs partitions under minimum degree constraints, Stiebitz [16] proved that every graph with minimum degree at least s + t + 1 admits a bipartition which induced subgraphs have minimum degree at least s and t, respectively, which confirmed a conjecture posed by Thomassen [17]. The complete graph K_{s+t+1} shows that the bound is sharp.

Suppose that \mathscr{H} is a set of graphs. We say that a graph is \mathscr{H} -free if it contains no member of \mathscr{H} as subgraphs. Let $g(s, t; \mathscr{H})$ be the least integer g such that any \mathscr{H} -free graph with minimum degree at least g can be partitioned into two sets which induced subgraphs have minimum degree at least s and t, respectively. For a given graph H, we simply write g(s, t; H) for $g(s, t; \mathscr{H})$ when $\mathscr{H} = \{H\}$. There are reasonable bounds for $g(s, t; \mathscr{H})$. Kaneko [11] first studied $g(s, t; \mathscr{H})$ and showed that $g(s, t; K_3) \leq s + t$. Suppose that $s, t \geq 2$. Diwan [3] showed that $g(s, t; \{K_3, K_{2,2}\}) \leq s + t - 1$, which was improved to $g(s, t; K_{2,2}) \leq s + t - 1$ by Ma and Yang [14]. Our first result shows that $g(s, t; K_{2,3}) \leq s + t$.

In fact, the results mentioned above concern *feasible partition*. First, we describe notation and terminology. Let *G* be a graph, and let *A*, *B* be two nonempty subsets of *V*(*G*). Then (*A*, *B*) is a *partition* of *G* if $A \cup B = V(G)$ and $A \cap B = \emptyset$. For $x \in V(G)$,

* Corresponding author.

E-mail address: mhwaue@sina.com (H. Ma).

 $[\]stackrel{ imes}{ imes}$ This work is supported by the National Natural Science Foundation of China (No. 11671087).

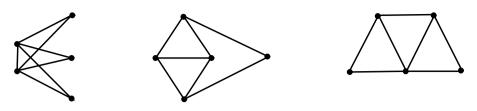


Fig. 1. From left to right, the graphs are $K_{2,3}^+$, H_1 , H_2 .

let $d_A(x)$ denote the number of vertices in A that are adjacent to x in G, and let e(A) denote the number of edges with both ends in A. Let $a, b : V(G) \mapsto \mathbf{N}$ be two functions. We say (A, B) is an (a, b)-feasible partition if $d_A(x) \ge a(x)$ for every $x \in A$ and $d_B(y) \ge b(y)$ for every $y \in B$. The following theorem gives an (a, b)-feasible partition of $K_{2,3}$ -free graphs.

Theorem 1.1. Let *G* be a $K_{2,3}$ -free graph, and let $a, b : V(G) \mapsto \mathbf{N} \setminus \{0, 1\}$ be two functions. If $d(x) \ge a(x) + b(x)$ for each $x \in V(G)$, then *G* admits an (a, b)-feasible partition.

Remark that the icosahedron is 5-regular and $K_{2,3}$ -free, but it does not admit (4,1)-feasible partitions. So the ranges of the functions a, b cannot be relaxed to the set of integers at least one. If we further forbid K_3 and C_8 , then we can lower the degree condition further by the following theorem.

Theorem 1.2. Let *G* be a { K_3 , C_8 , $K_{2,3}$ }-free graph, and let $a, b : V(G) \mapsto \mathbf{N} \setminus \{0, 1\}$ be two functions. If $d(x) \ge a(x) + b(x) - 1$ for each $x \in V(G)$, then *G* admits an (a, b)-feasible partition.

Let K_4^- be the graph obtained from K_4 by deleting an edge. Recently, Liu and Xu [12] proved that if a graph G is a K_4^- -free graph with at least four vertices and $d(x) \ge a(x) + b(x)$ for each vertex $x \in V(G)$, where $a, b : V(G) \mapsto \mathbf{N} \setminus \{0\}$, then G admits an (a, b)-feasible partition. Let \mathscr{H} be the set of graphs obtained by connecting a single vertex to exactly two vertices of K_4^- (see Fig. 1). It is easy to see that K_4^- is a subgraph of each graph in \mathscr{H} . The following theorem generalizes Liu and Xu's result.

Theorem 1.3. Let *G* be a { $K_{2,3}^+$, H_1 , H_2 }-free graph with at least five vertices, and let $a, b : V(G) \mapsto \mathbf{N} \setminus \{0\}$ be two functions. If $d(x) \ge a(x) + b(x)$ for each $x \in V(G)$, then *G* admits an (a, b)-feasible partition.

Let $G = K_{2,3}^+$, and $a, b : V(G) \mapsto \mathbf{N} \setminus \{0\}$ be two functions such that a(x) = d(x) - 1 and b(x) = 1 for each $x \in V(G)$. It is easy to see that G has no (a, b)-feasible partition. This implies that the condition $K_{2,3}^+$ -free is necessary. By the similar arguments, we see that the conditions H_1 -free and H_2 -free are also necessary.

This paper is organized as follows. In Section 2, we introduce some notations and a key lemma used in our proofs. We prove Theorems 1.1, 1.2 and 1.3 in Sections 3, 4 and 5, respectively.

2. Preliminary

In this section, we introduce some notations and lemmas that are used in our proofs. A *k*-cycle, denoted by C_k , is a cycle of length *k*. Let *G* be a graph and *a*, $b : V(G) \mapsto \mathbf{N} \setminus \{0\}$ be two functions. Suppose that $S \subseteq V(G)$. We say *S* is *a*-satisfactory if $d_S(x) \ge a(x)$ for any $x \in S$, and say *S* is *a*-degenerate if for any nonempty subset $S' \subseteq S$, there exists a vertex $x \in S'$ such that $d_{S'}(x) \le a(x)$. Let (A, B) be a partition of *G*. Then (A, B) is an (a, b)-degenerate partition if *A* is *a*-degenerate and *B* is *b*-degenerate. A pair (X, Y) (not necessary a partition of *G*) of disjoint subsets *X* and *Y* of V(G) is said to be (a, b)-feasible pair if *X* is *a*-satisfactory and *Y* is *b*-satisfactory. The following lemma, proved by Stiebitz [16], plays a key role in our proofs.

Lemma 2.1 (Stiebitz [16]). Let G be a graph and let $a, b : V(G) \mapsto \mathbf{N}$ be two functions such that $d(x) \ge a(x) + b(x) - 1$ for each $x \in V(G)$. If G has an (a, b)-feasible pair, then it admits an (a, b)-feasible partition.

The main idea of our proofs is an extension of that used in [16], where the *weight* of a partition is essential. For a partition (*A*, *B*) of a graph *G*, the weight $\omega(A, B)$ of (*A*, *B*) is defined by

$$\omega(A, B) = e(A) + e(B) + \sum_{u \in A} b(u) + \sum_{v \in B} a(v).$$

Then for $u \in A$, $v \in B$, a simple calculation shows that

$$\omega(A \setminus \{u\}, B \cup \{u\}) - \omega(A, B) = d_B(u) - d_A(u) + a(u) - b(u), \tag{1}$$

and

$$\omega(A \cup \{v\}, B \setminus \{v\}) - \omega(A, B) = d_A(v) - d_B(v) + b(v) - a(v).$$

$$\tag{2}$$

Download English Version:

https://daneshyari.com/en/article/9514432

Download Persian Version:

https://daneshyari.com/article/9514432

Daneshyari.com