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a b s t r a c t

Given graphs H1, . . . ,Ht , a graph G is (H1, . . . ,Ht )-Ramsey-minimal if every t-coloring of
the edges of G contains a monochromatic Hi in color i for some i ∈ {1, . . . , t}, but any
proper subgraph of G does not possess this property. We defineRmin(H1, . . . ,Ht ) to be the
family of (H1, . . . ,Ht )-Ramsey-minimal graphs. A graph G is Rmin(H1, . . . ,Ht )-saturated if
no element of Rmin(H1, . . . ,Ht ) is a subgraph of G, but for any edge e in G, some element
of Rmin(H1, . . . ,Ht ) is a subgraph of G + e. We define sat(n,Rmin(H1, . . . ,Ht )) to be the
minimum number of edges over all Rmin(H1, . . . ,Ht )-saturated graphs on n vertices. In
1987,Hanson andToft conjectured that sat(n,Rmin(Kk1 , . . . , Kkt )) = (r−2)(n−r+2)+

(r−2
2

)
for n ≥ r , where r = r(Kk1 , . . . , Kkt ) is the classical Ramsey number for complete
graphs. The first non-trivial case of Hanson and Toft’s conjecture for sufficiently large n
was settled in 2011, and is so far the only settled case. Motivated by Hanson and Toft’s
conjecture, we study theminimumnumber of edges over allRmin(K3, Tk)-saturated graphs
on n vertices, where Tk is the family of all trees on k vertices. We show that for n ≥ 18,
sat(n,Rmin(K3, T4)) = ⌊5n/2⌋. For k ≥ 5 and n ≥ 2k + (⌈k/2⌉ + 1)⌈k/2⌉ − 2, we
obtain an asymptotic bound for sat(n,Rmin(K3, Tk)) by showing that
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1. Introduction

All graphs considered in this paper are finite and without loops or multiple edges. For a graph G, we will use V (G) to
denote the vertex set, E(G) the edge set, |G| the number of vertices, e(G) the number of edges, δ(G) the minimum degree,
∆(G) the maximum degree, and G the complement of G. Given vertex sets A, B ⊆ V (G), we say that A is complete to (resp.
anti-complete to) B if for every a ∈ A and every b ∈ B, ab ∈ E(G) (resp. ab ̸∈ E(G)). The subgraph of G induced by A, denoted
G[A], is the graph with vertex set A and edge set {xy ∈ E(G) : x, y ∈ A}. We denote by B \ A the set B− A, eG(A, B) the number
of edges between A and B in G, and G\A the subgraph of G induced on V (G)\A, respectively. If A = {a}, we simply write B\a,
eG(a, B), and G \ a, respectively. For any edge e ∈ E(G), we use G+ e to denote the graph obtained from G by adding the new
edge e. The join G∨H (resp. union G∪H) of two vertex disjoint graphs G andH is the graph having vertex set V (G)∪V (H) and
edge set E(G) ∪ E(H) ∪ {xy : x ∈ V (G), y ∈ V (H)} (resp. E(G) ∪ E(H)). Given two isomorphic graphs G and H , we may (with
a slight but common abuse of notation) write G = H . For an integer t ≥ 1 and a graph H , we define tH to be the union of t
disjoint copies of H . We use Kn, K1,n−1, Cn, Pn and Tn to denote the complete graph, star, cycle, path and a tree on n vertices,
respectively.

Given graphs G, H1, . . . ,Ht , we write G → (H1, . . . ,Ht ) if every t-edge-coloring of G contains a monochromatic Hi in
color i for some i ∈ {1, 2, . . . , t}. The classical Ramsey number r(H1, . . . ,Ht ) is the minimum positive integer n such that
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Kn → (H1, . . . ,Ht ). A graphG is (H1, . . . ,Ht )-Ramsey-minimal ifG → (H1, . . . ,Ht ), but for any proper subgraphG′ ofG,G′
̸→

(H1, . . . ,Ht ). We define Rmin(H1, . . . ,Ht ) to be the family of (H1, . . . ,Ht )-Ramsey-minimal graphs. It is straightforward to
prove by induction that a graph G satisfies G → (H1, . . . ,Ht ) if and only if there exists a subgraph G′ of G such that G′ is
(H1, . . . ,Ht )-Ramsey-minimal. Ramsey’s theorem [18] implies that Rmin(H1, . . . ,Ht ) ̸= ∅ for all integers t and all finite
graphs H1, . . . ,Ht . As pointed out in a recent paper of Fox, Grinshpun, Liebenau, Person, and Szabó [12], ‘‘it is still widely
open to classify the graphs inRmin(H1, . . . ,Ht ), or even to prove that these graphs have certain properties’’. Some properties
of Rmin(H1, . . . ,Ht ) have been studied, such as the minimum degree s(H1, . . . ,Ht ) := min{δ(G) : G ∈ Rmin(H1, . . . ,Ht )},
which was first introduced by Burr, Erdős, and Lovász [4]. Recent results on s(H1, . . . ,Ht ) can be found in [12,13]. For more
information on Ramsey-related topics, the readers are referred to a very recent informative survey due to Conlon, Fox, and
Sudakov [6].

In this paper, we study the following problem. A graph G isRmin(H1, . . . ,Ht )-saturated if no element ofRmin(H1, . . . ,Ht )
is a subgraph of G, but for any edge e in G, some element ofRmin(H1, . . . ,Ht ) is a subgraph of G+ e. This notion was initiated
by Nešetřil [16] in 1986 when he asked whether there are infinitely many Rmin(H1, . . . ,Ht )-saturated graphs. This was
answered in the positive by Galluccio, Siminovits, and Simonyi [14]. We define sat(n,Rmin(H1, . . . ,Ht )) to be the minimum
number of edges over all Rmin(H1, . . . ,Ht )-saturated graphs on n vertices. This notion was first discussed by Hanson and
Toft [15] in 1987 when H1, . . . ,Ht are complete graphs. They proposed the following conjecture.

Conjecture 1.1. Let r = r(Kk1 , . . . , Kkt ) be the classical Ramsey number for complete graphs. Then

sat(n,Rmin(Kk1 , . . . , Kkt )) =

⎧⎪⎪⎨⎪⎪⎩
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Chen, Ferrara, Gould, Magnant, and Schmitt [5] proved that sat(n,Rmin(K3, K3)) = 4n − 10 for n ≥ 56. This settles the
first non-trivial case of Conjecture 1.1 for sufficiently large n, and is so far the only settled case. Ferrara, Kim, and Yeager [11]
proved that sat(n,Rmin(m1K2, . . . ,mtK2)) = 3(m1 + · · · + mt − t) for m1, . . . ,mt ≥ 1 and n > 3(m1 + · · · + mt − t). The
problem of finding sat(n,Rmin(K3, Tk)) was also explored in [5].

Proposition 1.2. Let k ≥ 2 and t ≥ 2 be integers. Then

sat(n,Rmin(Kt , Tk)) ≤ n(t−2)(k − 1) − (t − 2)2(k − 1)2 +
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where r = n (mod k − 1).

It was conjectured in [5] that the upper bound in Proposition 1.2 is asymptotically correct. Note that there is only one
tree on three vertices, namely, P3. A slightly better result was obtained for Rmin(K3, P3)-saturated graphs in [5].

Theorem 1.3. For n ≥ 11, sat(n,Rmin(K3, P3)) =
⌊ 5n

2

⌋
− 5.

Motivated by Conjecture 1.1,we study the following problem. Let Tk be the family of all trees on k vertices. Instead of fixing
a tree on k vertices as in Proposition 1.2, we will investigate sat(n,Rmin(K3, Tk)), where a graph G is (K3, Tk)-Ramsey-minimal
if for any 2-coloring c : E(G) → {red, blue}, G has either a red K3 or a blue tree Tk ∈ Tk, and we define Rmin(K3, Tk) to be the
family of (K3, Tk)-Ramsey-minimal graphs. By Theorem 1.3, we see that sat(n,Rmin(K3, T3)) = ⌊5n/2⌋−5 for n ≥ 11. In this
paper, we prove the following two main results. We first establish the exact bound for sat(n,Rmin(K3, T4)) for n ≥ 18, and
then obtain an asymptotic bound for sat(n,Rmin(K3, Tk)) for all k ≥ 5 and n ≥ 2k + (⌈k/2⌉ + 1)⌈k/2⌉ + 2.

Theorem 1.4. For n ≥ 18, sat(n,Rmin(K3, T4)) =
⌊ 5n

2
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Theorem 1.5. For any integers k ≥ 5 and n ≥ 2k + (⌈k/2⌉ + 1)⌈k/2⌉ − 2, there exist constants c =
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The constants c and C in Theorem 1.5 are both quadratic in k. We believe that the true value of sat(n,Rmin(K3, Tk)) is
closer to the upper bound in Theorem 1.5. To establish the desired lower and upper bounds for each of Theorems 1.4 and
1.5, we need to introduce more notation and prove a useful lemma (see Lemma 1.6). Given a graph H , a graph G is H-free if G
does not contain H as a subgraph. For a graph G, let c : E(G) → {red, blue} be a 2-edge-coloring of G and let Er and Eb be the
color classes of the coloring c . We use Gr and Gb to denote the spanning subgraphs of Gwith edge sets Er and Eb, respectively.



Download English Version:

https://daneshyari.com/en/article/9514434

Download Persian Version:

https://daneshyari.com/article/9514434

Daneshyari.com

https://daneshyari.com/en/article/9514434
https://daneshyari.com/article/9514434
https://daneshyari.com

