Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Saturation numbers for Ramsey-minimal graphs

Martin Rolek, Zi-Xia Song [*](#page-0-0)

Department of Mathematics, University of Central Florida, Orlando, FL 32816, United States

a r t i c l e i n f o

Article history: Received 9 October 2017 Received in revised form 8 August 2018 Accepted 13 August 2018

Keywords: Ramsey-minimal Saturation number Saturated graph

a b s t r a c t

Given graphs H_1, \ldots, H_t , a graph *G* is (H_1, \ldots, H_t) -Ramsey-minimal if every *t*-coloring of the edges of *G* contains a monochromatic H_i in color *i* for some $i \in \{1, \ldots, t\}$, but any proper subgraph of *G* does not possess this property. We define $\mathcal{R}_{min}(H_1, \ldots, H_t)$ to be the family of (H_1, \ldots, H_t) -Ramsey-minimal graphs. A graph *G* is $\mathcal{R}_{min}(H_1, \ldots, H_t)$ -saturated if no element of $\mathcal{R}_{min}(H_1, \ldots, H_t)$ is a subgraph of *G*, but for any edge *e* in \overline{G} , some element of $\mathcal{R}_{min}(H_1, \ldots, H_t)$ is a subgraph of $G + e$. We define $sat(n, \mathcal{R}_{min}(H_1, \ldots, H_t))$ to be the minimum number of edges over all $\mathcal{R}_{min}(H_1, \ldots, H_t)$ -saturated graphs on *n* vertices. In 1987, Hanson and Toft conjectured that *sat*(n , $\mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t}) = (r-2)(n-r+2)+\binom{r-2}{2}$ for $n \geq r$, where $r = r(K_{k_1}, \ldots, K_{k_t})$ is the classical Ramsey number for complete graphs. The first non-trivial case of Hanson and Toft's conjecture for sufficiently large *n* was settled in 2011, and is so far the only settled case. Motivated by Hanson and Toft's conjecture, we study the minimum number of edges over all $\mathcal{R}_{min}(K_3, \mathcal{T}_k)$ -saturated graphs on *n* vertices, where τ_k is the family of all trees on *k* vertices. We show that for $n \geq 18$, $sat(n, \mathcal{R}_{min}(K_3, \mathcal{T}_4)) = \lfloor 5n/2 \rfloor$. For $k \geq 5$ and $n \geq 2k + (\lceil k/2 \rceil + 1) \lceil k/2 \rceil - 2$, we obtain an asymptotic bound for $sat(n, \mathcal{R}_{min}(K_3, \mathcal{T}_k))$ by showing that $\left(\frac{3}{2} + \frac{1}{2} \left\lceil \frac{k}{2} \right\rceil\right) n - c \leq$ $sat(n, \mathcal{R}_{min}(K_3, \mathcal{T}_k)) \leq (\frac{3}{2} + \frac{1}{2} \left\lceil \frac{k}{2} \right\rceil) n + C$, where $c = (\frac{1}{2} \left\lceil \frac{k}{2} \right\rceil + \frac{3}{2}) k - 2$ and $C =$ $2k^2 - 6k + \frac{3}{2} - \left\lceil \frac{k}{2} \right\rceil (k - \frac{1}{2} \left\lceil \frac{k}{2} \right\rceil - 1).$

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and without loops or multiple edges. For a graph *G*, we will use *V*(*G*) to denote the vertex set, *E*(*G*) the edge set, |*G*| the number of vertices, *e*(*G*) the number of edges, δ(*G*) the minimum degree, ∆(*G*) the maximum degree, and *G* the complement of *G*. Given vertex sets *A*, *B* ⊆ *V*(*G*), we say that *A* is *complete to* (resp. *anti-complete to*) *B* if for every $a \in A$ and every $b \in B$, $ab \in E(G)$ (resp. $ab \notin E(G)$). The subgraph of *G* induced by *A*, denoted $G[A]$, is the graph with vertex set A and edge set $\{xy \in E(G) : x, y \in A\}$. We denote by $B \setminus A$ the set $B - A$, $e_G(A, B)$ the number of edges between *A* and *B* in *G*, and *G* \ *A* the subgraph of *G* induced on $V(G) \setminus A$, respectively. If $A = \{a\}$, we simply write $B \setminus a$, $e_G(a, B)$, and $G \setminus a$, respectively. For any edge $e \in E(\overline{G})$, we use $G + e$ to denote the graph obtained from *G* by adding the new edge *e*. The *join G*∨*H* (resp. *union G*∪*H*) of two vertex disjoint graphs *G* and *H* is the graph having vertex set *V*(*G*)∪*V*(*H*) and edge set $E(G) \cup E(H) \cup \{xy : x \in V(G), y \in V(H)\}$ (resp. $E(G) \cup E(H)$). Given two isomorphic graphs G and H, we may (with a slight but common abuse of notation) write $G = H$. For an integer $t \ge 1$ and a graph *H*, we define *tH* to be the union of *t* disjoint copies of *H*. We use K_n , $K_{1,n-1}$, C_n , P_n and T_n to denote the complete graph, star, cycle, path and a tree on *n* vertices, respectively.

Given graphs *G*, H_1, \ldots, H_t , we write $G \to (H_1, \ldots, H_t)$ if every *t*-edge-coloring of *G* contains a monochromatic H_i in color *i* for some $i \in \{1, 2, \ldots, t\}$. The classical *Ramsey number* $r(H_1, \ldots, H_t)$ is the minimum positive integer *n* such that

<https://doi.org/10.1016/j.disc.2018.08.012> 0012-365X/© 2018 Elsevier B.V. All rights reserved.

^{*} Corresponding author. *E-mail addresses:* msrolek@wm.edu (M. Rolek), Zixia.Song@ucf.edu (Z.-X. Song).

 $K_n \to (H_1,\ldots,H_t)$. A graph G is (H_1,\ldots,H_t) -Ramsey-minimal if $G \to (H_1,\ldots,H_t)$, but for any proper subgraph G' of G, G' $\not\to$ (H_1, \ldots, H_t) . We define $\mathcal{R}_{\text{min}}(H_1, \ldots, H_t)$ to be the family of (H_1, \ldots, H_t) -Ramsey-minimal graphs. It is straightforward to prove by induction that a graph *G* satisfies $G \to (H_1, \ldots, H_t)$ if and only if there exists a subgraph *G'* of *G* such that *G'* is (H_1, \ldots, H_t) -Ramsey-minimal. Ramsey's theorem [[18](#page--1-0)] implies that $\mathcal{R}_{min}(H_1, \ldots, H_t) \neq \emptyset$ for all integers *t* and all finite graphs *H*1, . . . , *H^t* . As pointed out in a recent paper of Fox, Grinshpun, Liebenau, Person, and Szabó [[12\]](#page--1-1), ''it is still widely open to classify the graphs in $\mathcal{R}_{\text{min}}(H_1, \ldots, H_t)$, or even to prove that these graphs have certain properties". Some properties of $\mathcal{R}_{min}(H_1, \ldots, H_t)$ have been studied, such as the minimum degree $s(H_1, \ldots, H_t) := min\{\delta(G) : G \in \mathcal{R}_{min}(H_1, \ldots, H_t)\}$ which was first introduced by Burr, Erdős, and Lovász [\[4\]](#page--1-2). Recent results on $s(H_1, \ldots, H_t)$ can be found in [[12](#page--1-1)[,13\]](#page--1-3). For more information on Ramsey-related topics, the readers are referred to a very recent informative survey due to Conlon, Fox, and Sudakov [\[6](#page--1-4)].

In this paper, we study the following problem. A graph *G* is $\mathcal{R}_{min}(H_1, \ldots, H_t)$ -saturated if no element of $\mathcal{R}_{min}(H_1, \ldots, H_t)$ is a subgraph of *G*, but for any edge *e* in \overline{G} , some element of $\mathcal{R}_{min}(H_1, \ldots, H_t)$ is a subgraph of $G + e$. This notion was initiated by Nešetřil [\[16\]](#page--1-5) in 1986 when he asked whether there are infinitely many $\mathcal{R}_{min}(H_1,\ldots,H_t)$ -saturated graphs. This was answered in the positive by Galluccio, Siminovits, and Simonyi [[14](#page--1-6)]. We define $sat(n, \mathcal{R}_{min}(H_1, \ldots, H_t))$ to be the minimum number of edges over all $\mathcal{R}_{min}(H_1,\ldots,H_t)$ -saturated graphs on *n* vertices. This notion was first discussed by Hanson and Toft [\[15\]](#page--1-7) in 1987 when *H*1, . . . , *H^t* are complete graphs. They proposed the following conjecture.

Conjecture 1.1. Let $r = r(K_{k_1}, \ldots, K_{k_t})$ be the classical Ramsey number for complete graphs. Then

$$
sat(n, \mathcal{R}_{\min}(K_{k_1},\ldots,K_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ (r-2)(n-r+2) + \binom{r-2}{2} & n \geq r \end{cases}
$$

Chen, Ferrara, Gould, Magnant, and Schmitt [[5](#page--1-8)] proved that $sat(n, \mathcal{R}_{min}(K_3, K_3)) = 4n - 10$ for $n \geq 56$. This settles the first non-trivial case of [Conjecture 1.1](#page-1-0) for sufficiently large *n*, and is so far the only settled case. Ferrara, Kim, and Yeager [[11](#page--1-9)] proved that $sat(n, \mathcal{R}_{min}(m_1K_2,\ldots,m_tK_2)) = 3(m_1+\cdots+m_t-t)$ for $m_1,\ldots,m_t \geq 1$ and $n > 3(m_1+\cdots+m_t-t)$. The problem of finding $sat(n, \mathcal{R}_{min}(K_3, T_k))$ was also explored in [[5\]](#page--1-8).

Proposition 1.2. *Let* $k > 2$ *and* $t > 2$ *be integers. Then*

$$
sat(n, \mathcal{R}_{\min}(K_t, T_k)) \le n(t-2)(k-1) - (t-2)^2(k-1)^2 + \binom{(t-2)(k-1)}{2} + \left\lfloor \frac{n}{k-1} \right\rfloor \binom{k-1}{2} + \binom{r}{2},
$$

where $r = n \pmod{k-1}$.

It was conjectured in [[5](#page--1-8)] that the upper bound in [Proposition 1.2](#page-1-1) is asymptotically correct. Note that there is only one tree on three vertices, namely, P_3 . A slightly better result was obtained for $\mathcal{R}_{min}(K_3, P_3)$ -saturated graphs in [\[5](#page--1-8)].

Theorem 1.3. *For* $n \ge 11$ *, sat*(n *,* $\mathcal{R}_{min}(K_3, P_3)$) = $\left\lfloor \frac{5n}{2} \right\rfloor - 5$ *.*

Motivated by [Conjecture 1.1,](#page-1-0) we study the following problem. Let T*^k* be the family of all trees on *k* vertices. Instead of fixing a tree on *k* vertices as in [Proposition 1.2,](#page-1-1) we will investigate *sat*(*n*, $\mathcal{R}_{\text{min}}(K_3, \mathcal{T}_k)$), where a graph *G* is (K_3, \mathcal{T}_k) -*Ramsey-minimal* if for any 2-coloring $c : E(G) \to \{red, blue\}$, *G* has either a red K_3 or a blue tree $T_k \in \mathcal{T}_k$, and we define $\mathcal{R}_{min}(K_3, \mathcal{T}_k)$ to be the family of (K_3, \mathcal{T}_k) -Ramsey-minimal graphs. By [Theorem 1.3](#page-1-2), we see that *sat*($n, \mathcal{R}_{min}(K_3, \mathcal{T}_3)$) = $\lfloor 5n/2 \rfloor - 5$ for $n \ge 11$. In this paper, we prove the following two main results. We first establish the exact bound for $sat(n, \mathcal{R}_{min}(K_3, \mathcal{T}_4))$ for $n \geq 18$, and then obtain an asymptotic bound for $sat(n, \mathcal{R}_{min}(K_3, \mathcal{T}_k))$ for all $k \geq 5$ and $n \geq 2k + (\lceil k/2 \rceil + 1) \lceil k/2 \rceil + 2$.

Theorem 1.4. For $n \ge 18$, sat $(n, \mathcal{R}_{min}(K_3, \mathcal{T}_4)) = \left[\frac{5n}{2} \right]$.

Theorem 1.5. For any integers $k \ge 5$ and $n \ge 2k + (\lceil k/2 \rceil + 1) \lceil k/2 \rceil - 2$, there exist constants $c = (\frac{1}{2} \lceil \frac{k}{2} \rceil + \frac{3}{2}) k - 2$ and $C = 2k^2 - 6k + \frac{3}{2} - \left\lceil \frac{k}{2} \right\rceil (k - \frac{1}{2} \left\lceil \frac{k}{2} \right\rceil - 1)$ such that

$$
\left(\frac{3}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right)n-c\leq sat(n,\mathcal{R}_{\min}(K_3,\mathcal{T}_k))\leq \left(\frac{3}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right)n+C.
$$

The constants *c* and *C* in [Theorem 1.5](#page-1-3) are both quadratic in *k*. We believe that the true value of sat(*n*, $\mathcal{R}_{min}(K_3, \mathcal{T}_k)$) is closer to the upper bound in [Theorem 1.5](#page-1-3). To establish the desired lower and upper bounds for each of [Theorems 1.4](#page-1-4) and [1.5](#page-1-3), we need to introduce more notation and prove a useful lemma (see [Lemma 1.6](#page--1-10)). Given a graph *H*, a graph *G* is *H*-*free* if *G* does not contain *H* as a subgraph. For a graph *G*, let $c : E(G) \rightarrow \{red, blue\}$ be a 2-edge-coloring of *G* and let E_r and E_b be the color classes of the coloring c . We use G_r and G_b to denote the spanning subgraphs of G with edge sets E_r and E_b , respectively. Download English Version:

<https://daneshyari.com/en/article/9514434>

Download Persian Version:

<https://daneshyari.com/article/9514434>

[Daneshyari.com](https://daneshyari.com)