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Abstract

A method for finding asymptotic lower bounds on information divergence is devel-
oped and used to determine the rate of convergence in the Central Limit Theorem.
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1 Introduction

Recently Oliver Johnson and Andrew Barron [JB01] proved that the rate
of convergence in the information theoretic Central Limit Theorem is upper
bounded by c

n
under suitable conditions for some constant c. In general if

r0 > 2 is the smallest number such that the r’th moment does not vanish then
a lower bound on total variation is c

n
r0
2 −1

for some constant c. Using Pinsker’s

inequality this gives a lower bound on information divergence of order 1
nr0−2 .

In this paper more explicit lower bounds are computed. The idea is simple and
follows general ideas related to the maximum entropy principle as described
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by Jaynes [Jay57]. If some of the higher moments of a random variable X are
known the higher moments of the centered and normalized sum of indepen-
dent copies of X can be calculated. Now, maximize the entropy given these
moments. This is equivalent to minimize the divergence to the normal distri-
bution. The distribution maximizing entropy with given moment constraints
can not be calculated exactly but letting n go to infinity asymptotic results
are obtained.

2 Existence of maximum entropy distributions

Let X be a random variable for which the moments of order 1, 2, ...R exists.
Without loss of generality we will assume that E (X) = 0 and V ar (X) = 1.
The r’th central moment is denoted µr (X) = E (Xr) . The Hermite poly-
nomials Hr (X) are the orthogonal polynomials with respect to the normal
distribution. One easily translate between moments and the Hermite mo-
ments E (Hr (X)) . Let r0 denote the smallest number greater than 1 such
that E (Hr (X)) �= 0. Put γ0 = E (Hr0 (X)) .

It is well known that the normal distribution is the maximum entropy distri-
bution for a random variable with specified first and second moment. It is
also known that there exists no maximum entropy distribution if the first 3
moments are specified and the skewness is required to be non-zero [CT91].

Using that a polynomial of even order with positive leading coefficient domi-
nates all polynomials of lower order for arguments outside a bounded set we
get the following important result.

Theorem 2.1 Let K be the convex set of distributions for which the first R
moments are defined and satisfies the following equations and inequality

E (Hr (X)) = hr for r < R

E (HR (X)) ≤ hR .

If R is even then the maximum entropy distribution exists.

Corollary 2.2 Let C be the convex set of distributions for which the first R
moments are defined and satisfies the following equations

E (Hr (X)) = hr for r ≤ R .

If any of the following conditions are fulfilled

• r0 is odd and R = r0 + 1
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