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Abstract

We show that any cubic bridgeless graph with m edges contains two perfect match-
ings that cover at least 3m/5 and three perfect matchings that cover at least 27m /35
of its edges.
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1 Introduction

A well-known conjecture of Berge and Fulkerson states that every bridgeless
cubic graph contains a family of six perfect matchings covering each edge
exactly twice:

Conjecture 1.1 Fvery cubic bridgeless graph G contains sixz perfect match-
ing My, ..., Mg such that each edge of G s contained in precisely two of the
matchings.

Conjecture 1.1 is attributed to Berge in [4], but it first appeared published
in [3]. Cycle Double Conjecture is also closely related to this conjecture. Note
also that Conjecture 1.1 trivially holds for cubic graphs G that are 3-edge-
colorable.

The following weaker version of Conjecture 1.1 due to Berge is also open:

Conjecture 1.2 FEvery cubic bridgeless graph G contains five perfect match-
ings My, ..., Ms such that each edge of G is contained in at least one of the
matchings.

We remark that even if the number 5 in Conjecture 1.2 is replaced by any
larger constant (independent of G), the statement is not known to be true. In
this paper, we investigate the maximum possible size of the union of a given
number of perfect matchings in a cubic bridgeless graph. More precisely, we
study, for k& € {2, 3}, the numbers

me = if mex, TEees
where the infimum is taken over all bridgeless cubic graphs G, and M, ..., M}

range over all perfect matchings of G. Note that Conjecture 1.2 asserts that
ms = 1.

We determine the precise value of my and provide a non-trivial lower bound
on ms. Let us begin by considering the upper bounds. The Petersen graph
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