

Available online at www.sciencedirect.com

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 22 (2005) 341-345

www.elsevier.com/locate/endm

Unions of perfect matchings in cubic graphs

Tomáš Kaiser ^{1,2}

Department of Mathematics and Institute for Theoretical Computer Science (ITI) University of West Bohemia Univerzitní 8, 306 14 Plzeň, Czech Republic

Daniel Král^{', 3,4}

Institute for Mathematics
Technical University Berlin
Strasse des 17. Juni 136, D-10623 Berlin, Germany

Department of Applied Mathematics Faculty of Mathematics and Physics, Charles University Malostranské náměstí 25, 118 00 Prague, Czech Republic

Serguei Norine ^{5,6}

School of Mathematics Georgia Institute of Technology Atlanta, GA 30332, USA

Abstract

We show that any cubic bridgeless graph with m edges contains two perfect matchings that cover at least 3m/5 and three perfect matchings that cover at least 27m/35 of its edges.

Keywords: cubic graphs, perfect matchings, Berge-Fulkerson's conjecture

1 Introduction

A well-known conjecture of Berge and Fulkerson states that every bridgeless cubic graph contains a family of six perfect matchings covering each edge exactly twice:

Conjecture 1.1 Every cubic bridgeless graph G contains six perfect matching M_1, \ldots, M_6 such that each edge of G is contained in precisely two of the matchings.

Conjecture 1.1 is attributed to Berge in [4], but it first appeared published in [3]. Cycle Double Conjecture is also closely related to this conjecture. Note also that Conjecture 1.1 trivially holds for cubic graphs G that are 3-edge-colorable.

The following weaker version of Conjecture 1.1 due to Berge is also open:

Conjecture 1.2 Every cubic bridgeless graph G contains five perfect matchings M_1, \ldots, M_5 such that each edge of G is contained in at least one of the matchings.

We remark that even if the number 5 in Conjecture 1.2 is replaced by any larger constant (independent of G), the statement is not known to be true. In this paper, we investigate the maximum possible size of the union of a given number of perfect matchings in a cubic bridgeless graph. More precisely, we study, for $k \in \{2,3\}$, the numbers

$$m_k = \inf_{G} \max_{M_1, \dots, M_k} \frac{\left| \bigcup_i M_i \right|}{|E(G)|},$$

where the infimum is taken over all bridgeless cubic graphs G, and M_1, \ldots, M_k range over all perfect matchings of G. Note that Conjecture 1.2 asserts that $m_5 = 1$.

We determine the precise value of m_2 and provide a non-trivial lower bound on m_3 . Let us begin by considering the upper bounds. The Petersen graph

 $^{^{1}}$ Institute for Theoretical Computer Science (ITI) is supported as the project 1M0021620808 of the Czech Ministry of Education. This author was also supported by the Research Plan MSM 4977751301 of the Czech Ministry of Education.

² Email: kaisert@kma.zcu.cz

³ The author is a postdoctoral fellow at TU Berlin within the framework of the European training network COMBSTRU.

Email: kral@kam.mff.cuni.cz

⁵ This author was partially supported by NSF Grant No. 0200595.

⁶ Email: snorine@math.gatech.edu

Download English Version:

https://daneshyari.com/en/article/9514579

Download Persian Version:

https://daneshyari.com/article/9514579

<u>Daneshyari.com</u>