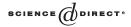


Available online at www.sciencedirect.com



Journal of Combinatorial Theory

Series A

www.elsevier.com/locate/jcta

Journal of Combinatorial Theory, Series A 112 (2005) 194-211

Valuations and hyperplanes of dual polar spaces

Bart De Bruyn, Pieter Vandecasteele

Department of Pure Mathematics and Computer Algebra, Ghent University, Galglaan 2, B-9000, Gent, Belgium Received 4 January 2005

> Communicated by Francis Buekenhout Available online 29 March 2005

Abstract

Valuations were introduced in De Bruyn and Vandecasteele (Valuations of near polygons, preprint, 2004) as a very important tool for classifying near polygons. In the present paper we study valuations of dual polar spaces. We will introduce the class of the SDPS-valuations and characterize these valuations. We will show that a valuation of a finite thick dual polar space is the extension of an SDPS-valuation if and only if no induced hex valuation is ovoidal or semi-classical. Each SDPS-valuation will also give rise to a geometric hyperplane of the dual polar space.

© 2005 Elsevier Inc. All rights reserved.

MSC: 51A50; 51E12; 51E20

Keywords: Dual polar space; Near polygon; Hyperplane

1. Introduction

A near polygon [14] is a partial linear space $S = (P, \mathcal{L}, I)$, $I \subseteq P \times \mathcal{L}$, with the property that for every point p and every line L there exists a unique point on L nearest to p. Here distances $d(\cdot, \cdot)$ are measured in the point graph or collinearity graph Γ_S of S. If d denotes the diameter of Γ_S , then the near polygon is called a *near 2d-gon*. A near 0-gon is a point and a near 2-gon is a line.

If X_1 and X_2 are two nonempty set of points of a near polygon, then $d(X_1, X_2)$ denotes the minimal distance between a point of X_1 and a point of X_2 . If X_1 is a singleton $\{x_1\}$, then we will also write $d(x_1, X_2)$ instead of $d(\{x_1\}, X_2)$. For every $i \in \mathbb{N}$ and for every

E-mail addresses: bdb@cage.ugent.be (B. De Bruyn), pvdecast@cage.ugent.be (P. Vandecasteele).

nonempty set X of points, $\Gamma_i(X)$ denotes the set of all points y for which d(y, X) = i. If X is a singleton $\{x\}$, then we will also write $\Gamma_i(x)$ instead of $\Gamma_i(\{x\})$.

A near 2d-gon, $d \ge 2$, is called a *generalized* 2d-gon [16] if $|\Gamma_{i-1}(x) \cap \Gamma_1(y)| = 1$ for every $i \in \{1, \ldots, d-1\}$ and every two points x and y at distance i from each other. The generalized quadrangles [9] are precisely the near quadrangles. A generalized 2d-gon is called *degenerate* if it does not contain an ordinary 2d-gon as subgeometry. A degenerate generalized quadrangle consists of a number of lines through a point.

A subspace X of a near polygon $S = (\mathcal{P}, \mathcal{L}, I)$ is called *geodetically closed* if every point on a shortest path between two points of X also belongs to X. Suppose X is geodetically closed. Let \mathcal{L}_X denote the set of lines of S which are completely contained in X and put $I_X := I \cap (X \times \mathcal{L}_X)$. Then (X, \mathcal{L}_X, I_X) is a (geodetically closed) sub near polygon of S. A nondegenerate geodetically closed sub near quadrangle of a near polygon is called a *quad*. Sufficient conditions for the existence of quads were given in Proposition 2.5 of [14].

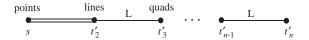
If X_1, \ldots, X_k are nonempty sets of points, then $\mathcal{C}(X_1, \ldots, X_k)$ denotes the smallest geodetically closed sub near polygon through $X_1 \cup \cdots \cup X_k$, i.e. the intersection of all geodetically closed sub near polygons through $X_1 \cup \cdots \cup X_k$. If one of these sets is a singleton $\{x\}$, then we will often omit the braces and write $\mathcal{C}(\cdots, x, \cdots)$ instead of $\mathcal{C}(\cdots, \{x\}, \ldots)$.

A geodetically closed sub near polygon F of a dense near polygon S is called *classical* in S if for every point x of S, there exists a (necessarily unique) point $\pi_F(x)$ in F such that $d(x, y)=d(x, \pi_F(x))+d(\pi_F(x), y)$ for every point y of F. We call π_F the projection on F.

A near polygon is said to have *order* (s,t) if every line is incident with s+1 points and if every point is incident with precisely t+1 lines. A near 2n-gon, $n \ge 2$, is called *regular* if it has an order (s,t) and if there exist constants t_i , $i \in \{0,\ldots,n\}$, such that for every two points x and y at distance i from each other, there are precisely t_i+1 lines through y containing a (necessarily unique) point at distance i-1 from x. Obviously, $t_0=-1$, $t_1=0$ and $t_n=t$.

A near polygon is called *dense* if every line is incident with at least three points and if every two points at distance 2 have at least two common neighbours. If x and y are two points of a dense near polygon at distance δ from each other, then by Theorem 4 of [2], x and y are contained in a unique geodetically closed sub near 2δ -gon (which necessarily coincides with $\mathcal{C}(x,y)$). These sub near polygons are called *hexes* if δ is equal to 3. For δ equal to 0, 1, respectively 2, we find the points, lines, respectively quads, of \mathcal{S} . With every dense near 2n-gon \mathcal{S} , there is associated a rank n geometry Δ . The elements of type $i \in \{1, \ldots, n\}$ are the geodetically closed sub near 2(i-1)-gons of \mathcal{S} . The geometry Δ has the following diagram:

If S is a regular near 2*n*-gon with parameters s, t, t_i $(0 \le i \le n)$ such that $s \ge 2$ and $t_2 \ge 1$, then we can parametrize the diagram as follows:



Here $t_i' := \frac{t_i - t_{i-1}}{t_{i-1} - t_{i-2}}$ for every $i \in \{2, \dots, n\}$. Note that $t_2' = t_2$.

Download English Version:

https://daneshyari.com/en/article/9515361

Download Persian Version:

https://daneshyari.com/article/9515361

<u>Daneshyari.com</u>