

Available online at www.sciencedirect.com

Journal of Combinatorial Theory

Journal of Combinatorial Theory, Series A 112 (2005) 44-81

Jeries A

www.elsevier.com/locate/jcta

Tableaux on k + 1-cores, reduced words for affine permutations, and k-Schur expansions

Luc Lapointe^{a,1}, Jennifer Morse^{b,2}

^aInstituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile ^bDepartment of Mathematics, University of Miami, Coral Gables, FL 33124, USA

Received 11 August 2003

Communicated by Adriano Garsia Available online 17 March 2005

Abstract

The k-Young lattice Y^k is a partial order on partitions with no part larger than k. This weak subposet of the Young lattice originated (Duke Math. J. 116 (2003) 103–146) from the study of the k-Schur functions $s_{\lambda}^{(k)}$, symmetric functions that form a natural basis of the space spanned by homogeneous functions indexed by k-bounded partitions. The chains in the k-Young lattice are induced by a Pieritype rule experimentally satisfied by the k-Schur functions. Here, using a natural bijection between k-bounded partitions and k+1-cores, we establish an algorithm for identifying chains in the k-Young lattice with certain tableaux on k+1 cores. This algorithm reveals that the k-Young lattice is isomorphic to the weak order on the quotient of the affine symmetric group \tilde{S}_{k+1} by a maximal parabolic subgroup. From this, the conjectured k-Pieri rule implies that the k-Kostka matrix connecting the homogeneous basis $\{h_{\lambda}\}_{\lambda \in Y^k}$ to $\{s_{\lambda}^{(k)}\}_{\lambda \in Y^k}$ may now be obtained by counting appropriate classes of tableaux on k+1-cores. This suggests that the conjecturally positive k-Schur expansion coefficients for Macdonald polynomials (reducing to q, t-Kostka polynomials for large k) could be described by a q, t-statistic on these tableaux, or equivalently on reduced words for affine permutations. © 2005 Elsevier Inc. All rights reserved.

Keywords: Affine Weyl group; Cores; k-Schur functions; Macdonald polynomials

E-mail addresses: lapointe@inst-mat.utalca.cl (L. Lapointe), morsej@math.miami.edu (J. Morse).

¹ Research of L. Lapointe was supported in part by FONDECYT (Chile) Grant #1030114, the Programa Formas Cuadráticas of the Universidad de Talca, and NSERC (Canada) Grant #250904.

² Research of J. Morse was supported in part by NSF Grant #DMS-0400628.

Contents

1. Introduction	45
1.1. The <i>k</i> -Young lattice	45
1.2. Macdonald expansion coefficients	48
2. Definitions	51
2.1. Partitions	51
2.2. Affine symmetric group	52
3. Bijection: $k + 1$ -cores and k -bounded partitions	53
4. The <i>k</i> -lattice	
5. <i>k</i> + 1-cores	58
6. k -Young lattice and $k + 1$ -cores	62
7. Standard <i>k</i> -tableaux	64
7.1. Definition	64
7.2. Bijection: <i>k</i> -tableaux and saturated chains	66
8. The <i>k</i> -Young lattice and the weak order on \tilde{S}_{k+1}/S_{k+1}	67
8.1. The isomorphism	68
8.2. Bijection: <i>k</i> -tableaux and reduced words	68
9. Comparing elements differing by more than one box	70
10. Generalized k-tableaux and the k-Young lattice	74
10.1. Standardizing and deleting a letter from <i>k</i> -tableaux	75
10.2. Bijection: generalized <i>k</i> -tableaux and chains in the <i>k</i> -lattice	77
11. Symmetric functions and <i>k</i> -tableaux	78
Acknowledgments	81
References	81

1. Introduction

1.1. The k-Young lattice

Recall that λ is a successor of a partition μ in the Young lattice when λ is obtained by adding an addable corner to μ where partitions are identified by their Ferrers diagrams, with rows weakly decreasing from bottom-to-top. This relation, which we denote " $\mu \to \lambda$ ", occurs naturally in the classical Pieri rule

$$h_1[X] s_{\mu}[X] = \sum_{\lambda: \, \mu \to \lambda} s_{\lambda}[X], \tag{1.1}$$

and the partial order of the Young lattice may be defined as the transitive closure of $\mu \to \lambda$. It was experimentally observed that the *k*-Schur functions [9,11] satisfy the rule

$$h_1[X] s_{\mu}^{(k)}[X] = \sum_{\lambda: \, \mu \to_k \lambda} s_{\lambda}^{(k)}[X], \qquad (1.2)$$

where " $\mu \to_k \lambda$ " is a certain subrelation of " $\mu \to \lambda$ ". This given, the partial order of the k-Young lattice Y^k is defined as the transitive closure of $\mu \to_k \lambda$.

Download English Version:

https://daneshyari.com/en/article/9515421

Download Persian Version:

https://daneshyari.com/article/9515421

Daneshyari.com