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Shifted products that are coprime pure powers
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Abstract

A set A of positive integers is called a coprime Diophantine powerset if the shifted product
ab + 1 of two different elementsa and b of A is always a pure power, and the occurring pure
powers are all coprime. We prove that each coprime Diophantine powersetA ⊂ {1, . . . , N} has
|A|�8000 logN/ log logN for sufficiently largeN. The proof combines results from extremal
graph theory with number theory. Assuming the famousabc-conjecture, we are able to both drop the
coprimality condition and reduce the upper bound toc log logN for a fixed constantc.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A finite setA of integers is called a Diophantinen-tuple if |A| = n andab + 1 is a
perfect square for all elementsa andb of Awith a �= b. Diophantus of Alexandria studied
such sets and found the following examples of rational numbers:A = { 116, 3316, 174 , 10516 }.
Fermat found the following set of integers:{1,3,8,120}. Euler found a parametric solution
{a, b, a+b+2r,4r(r+a)(r+b)}, whereab+1= r2. Baker andDavenport[1] proved that
120 is the only positive integer that extends the triple{1,3,8} to a Diophantine quadruple.
This implies that Fermat’s example cannot be extended to a Diophantine quintuple. A well-
known folklore conjecture asserts that there are no Diophantine 5-tuples. In this direction,
Dujella proved that there are no Diophantine 6-tuples and that there are at most finitely
many Diophantine quintuples [8,9]. Dujella maintains an interesting web page (see [10])
on this and related problems, giving many further references.
Recently, BugeaudandDujella [6] obtainedauniformupper boundof 7 for the cardinality

of the setAwhen the set of squares is replaced by the set ofkth powers of integers.A further
generalization arises when, in addition, the exponentk is also allowed to vary. This leads
to the following definition: we call a setA of positive integers aDiophantine powerset
if ab + 1 is always a pure power for different elementsa and b of A. In view of the
aforementioned results, it is reasonable to conjecture that all Diophantine powersets are
finite, their cardinality being bounded by an absolute constant. However, at present only
the following weaker results are known. Gyarmati et al. ([18], see also [17], Theorem
6.4) showed that for sufficiently largeN any Diophantine powersetA ⊂ {1, . . . , N} has
cardinality

|A| < 340(logN)
2

log logN
, (1)

so Diophantine powersets are very thin. More recently, Bugeaud and Gyarmati[7] obtained
a slight improvement of this result, namely they proved

|A|�177000(logN/ log logN)2.
In their proof Gyarmati, Sárközy and Stewart defined for eachk a graph where the vertices
are the elements ofA, and an edge connects the verticesai andaj if and only if aiaj + 1 is
a perfectkth power. Using that these graphs do not contain a cycle of length 4 they obtained
(1). One may wonder whether a stronger bound can be proved by imposing a further, not
too restrictive, condition on the setA. The purpose of this paper is to show that this is indeed
the case.
We call a setA of positive integers acoprime Diophantine powersetif ab + 1 is always

a pure power for different elementsa andb of A, where in addition all occurring powers
are coprime in pairs. This condition is not too restrictive since it includes the following
important case. If the elements are multiples ofP = ∏

p<y p, where the product is taken
over primes less thany, then the numbersaiaj + 1 do not have any small primep�y
as a common factor and therefore many of these might be coprime. But it is known that,
for example, the most difficult case for giving an upper bound for the number of squares
in arithmetic progressions is when the common difference is the product of many small
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