

Available online at www.sciencedirect.com

Journal of Combinatorial Theory

Journal of Combinatorial Theory, Series B 93 (2005) 207-249

Series B

www.elsevier.com/locate/jctb

Contractible bonds in graphs

Sean McGuinness

17 London Road, Syosset, NY 11791, USA Received 21 August 2001 Available online 8 December 2004

Abstract

This paper addresses a problem posed by Oxley (Matroid Theory, Cambridge University Press, Cambridge, 1992) for matroids. We shall show that if G is a 2-connected graph which is not a multiple edge, and which has no K_5 -minor, then G has two edge-disjoint non-trivial bonds B for which G/B is 2-connected.

© 2004 Elsevier Inc. All rights reserved.

MSC: 05C38; 05C40; 05C70

Keywords: Bond; Minor; Contractible

1. Introduction

For a graph G we shall let $\varepsilon(G)$ and v(G) denote the number of edges and vertices in G, respectively. For a set of edges or vertices A of V(G), we let $\mathbf{G}(\mathbf{A})$ denote the subgraph induced by A. For sets of vertices $X \subseteq V(G)$ and $Y \subseteq V(G)$ we denote the set of edges having one endpoint in X and the other in Y by $[\mathbf{X}, \mathbf{Y}]$. A *cutset* is a set of edges $[X, \overline{X}]$ for some X. A cutset which is minimal is called a *bond* or *cocycle*; that is, $B = [X, \overline{X}]$ is a bond if and only if both G(X) and $G(\overline{X})$ are connected subgraphs. A bond B is said to be *trivial* if $B = [\{v\}, V(G) \setminus \{v\}]$ for some vertex v. A collection of edge-disjoint bonds of a graph which partitions its edges is called a *bond decomposition*. If in addition all its bonds are non-trivial, then the decomposition is said to be *non-trivial*.

E-mail address: tokigcanuck@aol.com

0095-8956/\$ - see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jctb.2004.10.002

For $A \subset E(G)$ we let \mathbf{G}/\mathbf{A} denote the graph obtained by contracting the edges of A. For $v \in V(G/A)$ we denote by $> \mathbf{v} <_{\mathbf{A}}$ the vertices in the component of $G' = G(A) \cup V(G)$ corresponding to v. For an edge $e \in E(G/A)$ we let $> \mathbf{e} <_{\mathbf{A}}$ denote the corresponding edge in G. Similarly, for a subset of vertices (resp. edges) $X \circ G/A$ we let $> \mathbf{X} <_{\mathbf{A}}$ denote the subset of vertices (resp. edges) $\bigcup_{x \in X} > x <_A$. For a subgraph $H \circ G/H$ induced by V(H) we let $> \mathbf{H} <_{\mathbf{A}}$ denote the subgraph of G induced by $> V(H) <_A$. For each vertex $v \in V(G)$ we associate the vertex $u \in V(G/A)$ where $v \in V(G/A)$ and for an edge $v \in V(G/A)$ we associate the edge $v \in V(G/A)$ where $v \in V(G/A)$ and for a subset of edges $v \in V(G/A)$ we let $v \in V(G/A)$ we let $v \in V(G/A)$ and for a subset of edges $v \in V(G/A)$ we let $v \in V(G/A)$ be let $v \in V(G/A)$. J. Oxley proposed the following problem in [7]:

1.1 Problem. Let M be a simple connected binary matroid having cogirth at least 4. Does M have a circuit C such that M\C is connected?

Here, by *cogirth* of a matroid M we mean the minimum cardinality of a cocircuit in M. For graphic matroids, this problem has been answered in the affirmative by a number of authors including Jackson [3], Mader [5], and Thomassen and Toft [8]. Recently, Goddyn and Jackson [1] proved that for any connected, binary matroid M having cogirth at least 5 which does not have either a F_7 -minor or a F_7^* -minor, there is a cycle C for which $M \setminus C$ is connected. For cographic matroids, the above problem translates as follows. A circuit T in $M^*(G)$ corresponds to a bond in G. The matroid $M^*(G) \setminus T$ is connected if and only if either |E(G/T)| = 1 or G/T is loopless and 2-connected. Oxley's problem for cographic matroids can be restated as:

1.2 Problem. Given G is a 2-connected, 3-edge connected graph with girth at least 4, does G contain a bond B such that G/B is 2-connected?

We say that a collection of edges A in a 2-connected graph G is *contractible* if G/A is 2-connected. We say that a bond is *good* if it is both non-trivial and contractible. We call two edge-disjoint good bonds a *good pair* of bonds.

In [4], an example is given which shows that the answer to this problem is in general negative. The main result of this paper addresses Oxley's problem in the case of non-simple cographic matroids. Here there is a small example of a graph based on K_5 which has no contractible bonds: let B be a bond of cardinality 6 in K_5 , and let G be the graph obtained from K_5 by duplicating each edge in $E(K_5)\setminus B$ and then subdividing both edges of each resulting digon exactly once (see Fig. 1). Then G is 2-connected with girth at least 4, but contracting any bond of G leaves a graph which is not 2-connected. We say that a digon is *isolated* if it is a multiple 2-edge consisting of two non-loop edges $\{e, f\}$ where no other edge has the same end vertices as e and f. In [2], the following theorem was proved which confirmed conjecture Jackson [3]:

1.3 Theorem. Let G be a 2-connected graph having $k \in \{0, 1\}$ vertices of degree 3 and which has no Petersen graph minor and which is not a cycle. Then G has 2 - k edge-disjoint

Download English Version:

https://daneshyari.com/en/article/9515951

Download Persian Version:

https://daneshyari.com/article/9515951

<u>Daneshyari.com</u>