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Abstract

For each pair of linear ordering4., M), the representability number rgp(L) of L in M is the
least ordinale such thatl can be order-embedded into the lexicographic pod . The case
M =R is relevant to utility theory. The main results in this paper are as follows. £i)dfa regular
cardinal that is not order-embeddableffi then repj, («) = «; as a consequence, regk) = «
for eachx > wq. (i) If M is an uncountable linear ordering with the property thak ey 2 is
not order-embeddable in/ for each uncountablet € M, then repj, (M) = o for any ordi-
nal «; in particular, repg (Rf,,) = «. (iii) If L is either an Aronszajn line or a Souslin line, then
repip (L) = w1.
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1. Introduction

In this paper we deal with representations of linear orderings (also called chains) in ways
that are useful in the field of mathematical economics calldidy theory (see [6] for an
overview of this topic). A key notion in utility theory is that of representability: a chain
(L, <) is representabldin R) if there exists a map : L — R, called a utility function,
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which is an order-embedding (i.e..< y ifand only ifu(x) < u(y) forall x, y € L). If we
interpretx < y as“y is preferred toc”, then a utility function onL measures preferences
guantitatively. In the traditional approach much attention has been given to characteri-
zations of representable chains. A well-known result in this sense is the following (see,
e.g., [2]). (Recall that ajumpin a chainL is a pair(a, b) € L? such thatz < b and the

open intervala, b) is empty.)

Theorem 1.1. A chain is representablén R) if and only if it is separable in the order
topology and has at most countably many jumps.

A more recent approach to the problem of representability focuses on finding structural
obstructions to the representability of a chain among its subchains (see [1,3]). Classical
examples of chains for which representability fails are the real plane endowed with the
lexicographic ordeﬂRﬁex, the first uncountable ordinab; and its reverse ordering;*.

Recall that a chair is shortif neitherw; nor w1* order-embed intd., and it islong oth-
erwise; further, arronszajn linds an uncountable chain that is short and does not contain
any uncountable representable subchain. The next result (from [1]) gives a subordering

characterization of non-representable chains.

Theorem 1.2. A chain L is non-representablén R) if and only if (i) it is long, or (ii) it
order-embeds a non-representable subchain of the lexicographic plar{@éi) at order-
embeds an Aronszajn line.

Our objective is to give a more descriptive classification of non-representable chains
(and, more generally, of all chains). In this paper we begin to pursue this goal by classifying
chains according to a measure of their “lexicographic complexity”. To this aim we take the
point of view that a chain which can be order-embedded in the lexicographically ordered
real plane is representable, even if in a weaker sense. Such an ordering is realized in a way
that is more complex than for suborderingsif but which still fits within the general
utility concept. This is based on the observation that an order-embeddiflg ef) into
Rlzex corresponds to two functions,, uz: L — R with the property that for alk, y € L,
we havex < y if and only if eitheru1(x) < u1(y), orui(x) = u1(y) andus(x) < u2(y).

In other words, preference in the sensd.aforresponds to preference accordingiand
uy together, but with¢y being given higher priority.

More generally, we say that a chaii, <) is «-representablg(in R) if it can be
order-embedded into the lexicographic povif , wherea is an ordinal number. This
corresponds to having a representation of the preference ordering a well-ordered
family of utility functions ug : L — R indexed by the ordinal§ < «; for anyx,y € L
one hasy < y if and only if ug(x) < ug(y) holds, whereg is the least ordinal below
at whichug(x) andug(y) differ. One can think of the ordinal indices as determining the
relative importance of the utility functions:.

The least ordinak for which a chainL is a-representable is called tiepresentability
number of L (in R). More generally, for any pair of chaind., M), we define theepre-
sentability number ofL in M as the least ordinat such thatL can be order-embedded
into M}Z,; this ordinal is denoted by regr(L). In this paper we determine rgp(L) for
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