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The representability number of a chain
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Abstract

For each pair of linear orderings(L,M), the representability number reprM(L) of L in M is the
least ordinalα such thatL can be order-embedded into the lexicographic powerMα

lex. The case
M = R is relevant to utility theory. The main results in this paper are as follows. (i) Ifκ is a regular
cardinal that is not order-embeddable inM, then reprM(κ) = κ; as a consequence, reprR(κ) = κ

for eachκ � ω1. (ii) If M is an uncountable linear ordering with the property thatA ×lex 2 is
not order-embeddable inM for each uncountableA ⊆ M, then reprM(Mα

lex) = α for any ordi-
nal α; in particular, reprR(Rα

lex) = α. (iii) If L is either an Aronszajn line or a Souslin line, then
reprR(L) = ω1.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we deal with representations of linear orderings (also called chains) in ways
that are useful in the field of mathematical economics calledutility theory (see [6] for an
overview of this topic). A key notion in utility theory is that of representability: a chain
(L,≺) is representable(in R) if there exists a mapu :L → R, called a utility function,
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which is an order-embedding (i.e.,x ≺ y if and only if u(x) < u(y) for all x, y ∈ L). If we
interpretx ≺ y as “y is preferred tox”, then a utility function onL measures preferences
quantitatively. In the traditional approach much attention has been given to characteri-
zations of representable chains. A well-known result in this sense is the following (see,
e.g., [2]). (Recall that ajump in a chainL is a pair(a, b) ∈ L2 such thata ≺ b and the
open interval(a, b) is empty.)

Theorem 1.1. A chain is representable(in R) if and only if it is separable in the order
topology and has at most countably many jumps.

A more recent approach to the problem of representability focuses on finding structural
obstructions to the representability of a chain among its subchains (see [1,3]). Classical
examples of chains for which representability fails are the real plane endowed with the
lexicographic orderR2

lex, the first uncountable ordinalω1 and its reverse orderingω1
∗.

Recall that a chainL is short if neitherω1 norω1
∗ order-embed intoL, and it islong oth-

erwise; further, anAronszajn lineis an uncountable chain that is short and does not contain
any uncountable representable subchain. The next result (from [1]) gives a subordering
characterization of non-representable chains.

Theorem 1.2. A chainL is non-representable(in R) if and only if (i) it is long, or (ii) it
order-embeds a non-representable subchain of the lexicographic plane, or(iii) it order-
embeds an Aronszajn line.

Our objective is to give a more descriptive classification of non-representable chains
(and, more generally, of all chains). In this paper we begin to pursue this goal by classifying
chains according to a measure of their “lexicographic complexity”. To this aim we take the
point of view that a chain which can be order-embedded in the lexicographically ordered
real plane is representable, even if in a weaker sense. Such an ordering is realized in a way
that is more complex than for suborderings ofR, but which still fits within the general
utility concept. This is based on the observation that an order-embedding of(L,≺) into
R2

lex corresponds to two functionsu1, u2 :L → R with the property that for allx, y ∈ L,
we havex ≺ y if and only if eitheru1(x) < u1(y), or u1(x) = u1(y) andu2(x) < u2(y).
In other words, preference in the sense ofL corresponds to preference according tou1 and
u2 together, but withu1 being given higher priority.

More generally, we say that a chain(L,≺) is α-representable(in R) if it can be
order-embedded into the lexicographic powerRα

lex, whereα is an ordinal number. This
corresponds to having a representation of the preference ordering≺ by a well-ordered
family of utility functions uξ :L → R indexed by the ordinalsξ < α; for any x, y ∈ L

one hasx ≺ y if and only if uβ(x) < uβ(y) holds, whereβ is the least ordinal belowα
at whichuβ(x) anduβ(y) differ. One can think of the ordinal indices as determining the
relative importance of the utility functionsuξ .

The least ordinalα for which a chainL is α-representable is called therepresentability
number ofL (in R). More generally, for any pair of chains(L,M), we define therepre-
sentability number ofL in M as the least ordinalα such thatL can be order-embedded
into Mα

lex; this ordinal is denoted by reprM(L). In this paper we determine reprM(L) for
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