

Available online at www.sciencedirect.com

Topology and its Applications 152 (2005) 243-257

Topology and its Applications

www.elsevier.com/locate/topol

Zero-selectors and GO spaces [☆]

Giuliano Artico^{a,*}, Umberto Marconi^a, Jan Pelant^{b,‡}

 ^a Dipartimento di Matematica Pura e Applicata, via Belzoni 7, I-35131 Padova, Italy
^b Mathematical Institute of the Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Prague 1, Czech Republic

Dedicated to Professor Jan Aarts

Abstract

We are dealing with Vietoris continuous zero-selectors, i.e., they choose for each non-empty closed set F an isolated point in F. We show that the presence of a continuous zero-selector even on a small class of non-empty closed sets of a space X implies that X is scattered if X is metrizable or non-Archimedean or a P-space. Finally, using continuous zero-selectors, we characterize suborderable spaces which are subspaces of ordinals.

© 2004 Elsevier B.V. All rights reserved.

MSC: 54C65; 54B20; 54F05; 54G12

Keywords: Selector; GO space; (Sub)orderable; Scattered space; Vietoris topology; Ordinal space

0. Introduction

We continue the study of continuous *zero-selectors*, i.e., selectors, which are continuous with respect to the Vietoris topology on the family of non-empty closed sets of a given space X and which choose a (relatively) isolated point from each non-empty closed set. Clearly, the existence of an arbitrary zero-selector for X implies that X must be scattered.

^{*} Work supported by the grant "Progetti di ricerca di Ateneo" of the University of Padova and the grant GA ČR 201/03/0933.

^{*} Corresponding author.

E-mail addresses: artico@math.unipd.it (G. Artico), umarconi@math.unipd.it (U. Marconi).

[✤] The author passed away on April 11, 2005.

^{0166-8641/}\$ – see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2004.10.018

In the part 1.1, we are going to show that, under some additional restrictions to the space, X must be scattered even when a continuous zero-selector acts on a small subfamily of closed sets (see Theorem 1.5 below and its corollaries). In the part 1.2, following reasoning from [15], we show that the density of a regular space X with a continuous zero-selector is equal to the cardinality of X.

Continuous zero-selectors can be defined quite easily for ordinals: just take for each non-empty closed set its minimum. In Section 2, we are dealing with the "opposite" problem: which suborderable spaces with a continuous zero-selector are homeomorphic to a subspace of ordinals? We give a characterization of these suborderable spaces in Theorem 2.9 and we present examples that conditions used in Theorem 2.9 cannot be weakened. Let us recall in this connection that continuous zero-selectors were used to characterize compact ordinal spaces in [9], i.e., it was shown in particular that any compact space with a continuous zero-selector is homeomorphic to a space of ordinals. This fact was afterwards generalized for pseudocompact spaces [2].

1. Zero-selectors

All spaces considered in this paper are Hausdorff. Let $\mathfrak{F}(X)$ be the set of all non-empty closed subsets of X, equipped with the Vietoris topology [16,7]. A base for the Vietoris topology on a subspace \mathfrak{A} of $\mathfrak{F}(X)$ consists of all sets of the form:

$$\langle U^0, U^1, \dots, U^n \rangle = \left\{ F \in \mathfrak{A} \colon F \subseteq \bigcup_{i \leq n} U^i \text{ and } F \cap U^i \neq \emptyset \text{ for every } i \leq n \right\}$$

where U^0, \ldots, U^n are open subsets of *X*.

A (continuous) selector on a subspace \mathfrak{A} of $\mathfrak{F}(X)$ is a (continuous) map $\sigma : \mathfrak{A} \to X$ such that $\sigma(F) \in F$ for every $F \in \mathfrak{A}$, The selector σ is said to be a zero-selector provided that $\sigma(F)$ is relatively isolated in F for each $F \in \mathfrak{A}$. We say that X has a continuous (zero-)selector if there exists a continuous (zero-)selector on the whole $\mathfrak{F}(X)$.

The set of cluster points of a set E is denoted by E'.

1.1. Zero-selectors on smaller families

We start with some facts which will be useful in the sequel.

Lemma 1.1. Let σ be a continuous selector on a subspace \mathfrak{A} of $\mathfrak{F}(X)$, $C \in \mathfrak{A}$, $p = \sigma(C)$. Assume $p \in C'$. Then for every neighbourhood W of p there exists a non-empty finite subset $\Gamma(W)$ of $C \setminus \{p\}$ such that $\sigma(G) \in W$ for each $G \in \mathfrak{A}$, with $\Gamma(W) \subseteq G \subseteq C$.

Proof. By the continuity of σ , there exist non-empty open sets U^0, U^1, \ldots, U^n such that $C \in \langle U^0, U^1, \ldots, U^n \rangle \subseteq \sigma^{-1}(W)$. Since $p \in C'$, we can choose a point $p_i \in U^i \cap C$, for every $i \leq n$. The required set is $\Gamma(W) = \{p_1, \ldots, p_n\}$. \Box

Notice that the condition $p \in C'$ in the above lemma was needed to ensure that $\Gamma(W)$ does not contain *p*. If *p* is isolated in *C* then it is not excluded that $U^i \cap C = \{p\}$ for some *i*.

Download English Version:

https://daneshyari.com/en/article/9516823

Download Persian Version:

https://daneshyari.com/article/9516823

Daneshyari.com