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Abstract

We are dealing with Vietoris continuous zero-selectors, i.e., they choose for each non-empty closed
setF an isolated point inF . We show that the presence of a continuous zero-selector even on a small
class of non-empty closed sets of a spaceX implies thatX is scattered ifX is metrizable or non-
Archimedean or aP -space. Finally, using continuous zero-selectors, we characterize suborderable
spaces which are subspaces of ordinals.
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0. Introduction

We continue the study of continuouszero-selectors, i.e., selectors, which are continuous
with respect to the Vietoris topology on the family of non-empty closed sets of a given
spaceX and which choose a (relatively) isolated point from each non-empty closed set.
Clearly, the existence of an arbitrary zero-selector forX implies thatX must be scattered.
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In the part 1.1, we are going to show that, under some additional restrictions to the space,
X must be scattered even when a continuous zero-selector acts on a small subfamily of
closed sets (see Theorem 1.5 below and its corollaries). In the part 1.2, following reasoning
from [15], we show that the density of a regular spaceX with a continuous zero-selector
is equal to the cardinality ofX.

Continuous zero-selectors can be defined quite easily for ordinals: just take for each
non-empty closed set its minimum. In Section 2, we are dealing with the “opposite” prob-
lem: which suborderable spaces with a continuous zero-selector are homeomorphic to a
subspace of ordinals? We give a characterization of these suborderable spaces in Theo-
rem 2.9 and we present examples that conditions used in Theorem 2.9 cannot be weakened.
Let us recall in this connection that continuous zero-selectors were used to characterize
compact ordinal spaces in [9], i.e., it was shown in particular that any compact space with
a continuous zero-selector is homeomorphic to a space of ordinals. This fact was afterwards
generalized for pseudocompact spaces [2].

1. Zero-selectors

All spaces considered in this paper are Hausdorff. LetF(X) be the set of all non-empty
closed subsets ofX, equipped with the Vietoris topology [16,7]. A base for the Vietoris
topology on a subspaceA of F(X) consists of all sets of the form:〈

U0,U1, . . . ,Un
〉 = {

F ∈ A: F ⊆
⋃
i�n

Ui andF ∩ Ui �= ∅ for everyi � n

}

whereU0, . . . ,Un are open subsets ofX.
A (continuous) selector on a subspaceA of F(X) is a (continuous) mapσ :A → X

such thatσ(F ) ∈ F for everyF ∈ A, The selectorσ is said to be a zero-selector provided
that σ(F ) is relatively isolated inF for eachF ∈ A. We say thatX has a continuous
(zero-)selector if there exists a continuous (zero-)selector on the wholeF(X).

The set of cluster points of a setE is denoted byE′.

1.1. Zero-selectors on smaller families

We start with some facts which will be useful in the sequel.

Lemma 1.1. Let σ be a continuous selector on a subspaceA of F(X), C ∈ A, p = σ(C).
Assumep ∈ C′. Then for every neighbourhoodW of p there exists a non-empty finite
subsetΓ (W) of C \ {p} such thatσ(G) ∈ W for eachG ∈ A, with Γ (W) ⊆ G ⊆ C.

Proof. By the continuity ofσ , there exist non-empty open setsU0,U1, . . . ,Un such that
C ∈ 〈U0,U1, . . . ,Un〉 ⊆ σ−1(W). Sincep ∈ C′, we can choose a pointpi ∈ Ui ∩ C, for
everyi � n. The required set isΓ (W) = {p1, . . . , pn}. �
Notice that the conditionp ∈ C′ in the above lemma was needed to ensure thatΓ (W) does
not containp. If p is isolated inC then it is not excluded thatUi ∩ C = {p} for somei.
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