

Available online at www.sciencedirect.com

Topology and its Applications 153 (2005) 948-962

Topology and its Applications

www.elsevier.com/locate/topol

Partial metric monoids and semivaluation spaces

Salvador Romaguera^{a,*,1}, Michel Schellekens^{b,2}

^a Escuela de Caminos, Instituto de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, 46071 Valencia, Spain

^b Centre for Efficiency–Oriented Languages, Department of Computer Science, National University of Ireland, Western Road, Cork, Ireland

Received 19 September 2003; received in revised form 15 June 2004

Abstract

Stable partial metric spaces form a fundamental concept in Quantitative Domain Theory. Indeed, *all* domains have been shown to be quantifiable via a stable partial metric.

Monoid operations arise naturally in a quantitative context and hence play a crucial role in several applications. Here, we show that the structure of a stable partial metric monoid provides a suitable framework for a unified approach to some interesting examples of monoids that appear in Theoretical Computer Science. We also introduce the notion of a semivaluation monoid and show that there is a bijection between stable partial metric monoids and semivaluation monoids. © 2005 Elsevier B.V. All rights reserved.

MSC: 22A15; 22A26; 54E35; 54H12; 68Q55

Keywords: Partial metric monoid; Quasi-metric; Weightable; Meet semilattice; Semivaluation; Interval domain; Domain of words; Dual complexity space

E-mail addresses: sromague@mat.upv.es (S. Romaguera), m.schellekens@cs.ucc.ie (M. Schellekens).

¹ The author acknowledges the support of the Spanish Ministry of Science and Technology, Plan Nacional I + D + I, grant BFM2003-02302, and FEDER.

^{*} Corresponding author.

 $^{^2}$ The author acknowledges the support of Science Foundation Ireland.

^{0166-8641/\$ -} see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2005.01.023

1. Introduction

Throughout this paper the letters \mathbb{R} , \mathbb{R}^+ and ω will denote the set of real numbers, of nonnegative real numbers and of nonnegative integer numbers, respectively.

Matthews introduced in [14] the notion of a partial metric space as a part of the study of denotational semantics of dataflow networks, and obtained, among other results, a nice relationship between partial metric spaces and the so-called weightable quasi-metric spaces. These structures have been applied to obtain an extensional treatment of lazy data flow deadlock in [15].

Let us recall that a *partial metric* on a (nonempty) set X is a function $p: X \times X \to \mathbb{R}^+$ such that for all $x, y, z \in X$:

(i) $x = y \iff p(x, x) = p(x, y) = p(y, y);$

(ii) $p(x, x) \leq p(x, y)$;

(iii) p(x, y) = p(y, x);

(iv) $p(x, z) \leq p(x, y) + p(y, z) - p(y, y)$.

A *partial metric space* is a pair (X, p) such that X is a (nonempty) set and p is a partial metric on X.

Each partial metric *p* on *X* generates a T_0 -topology $\mathcal{T}(p)$ on *X* which has as a base the family of open *p*-balls { $B_p(x, \varepsilon)$: $x \in X$, $\varepsilon > 0$ }, where $B_p(x, \varepsilon) = \{y \in X: p(x, y) < \varepsilon\}$ for all $x \in X$ and $\varepsilon > 0$.

Note that contrarily to the metric case, some open *p*-ball may be empty [14, p. 187].

The following is a simple but useful example of a partial metric space.

For each pair $x, y \in \mathbb{R}^+$ let $p(x, y) = x \lor y$. Then p is a partial metric on \mathbb{R}^+ and thus (\mathbb{R}^+, p) is a partial metric space.

If (X, p) is a partial metric space, then (X, \sqsubseteq_p) is clearly an ordered set, where $x \sqsubseteq_p y \iff p(x, x) = p(x, y)$.

In the sequel \sqsubseteq_p will be called the *associated* (*partial*) order of *p*.

In [23] it is shown that *all* domains are quantifiable via a partial metric induced by a suitable semivaluation.

We focus in the following on three well-known Computer Science examples of monoids for which the notion of a (stable) partial metric monoid will provide a unifying concept.

The interval domain (or the partial real line) forms a model for a programming language for higher-order exact real number computation [5]. It consists of the set $I(\mathbb{R})$ of all nonempty closed and bounded real intervals ordered by reverse inclusion, together with an artificial least element \perp . In [14] (see also [8,16]) a partial metric p is defined on $I(\mathbb{R})$ such that its associated order coincides with the reverse inclusion order and thus $(I(\mathbb{R}), \sqsubseteq_p)$ is a meet semilattice as it is observed in [22]. We shall denote by I([0, 1]) the set of all nonempty closed and bounded intervals contained in [0, 1]. It was proved in [6] that I([0, 1])can be equipped with a suitable structure of monoid for which [0, 1] is the neutral element. For simplicity and without essential loss of generality, we shall refer in the sequel to I([0, 1]) as the interval domain.

If Σ^{∞} denotes the set of all finite and infinite "words" over a nonempty alphabet Σ , then $(\Sigma^{\infty}, \sqsubseteq)$ is a meet semilattice where \sqsubseteq is the prefix order on Σ^{∞} . Furthermore

Download English Version:

https://daneshyari.com/en/article/9516904

Download Persian Version:

https://daneshyari.com/article/9516904

Daneshyari.com