

Available online at www.sciencedirect.com

Topology and its Applications 148 (2005) 233-238

Topology and its Applications

www.elsevier.com/locate/topol

On Σ^* -spaces and strong Σ^* -spaces of countable pseudocharacter

Liang-Xue Peng

College of Applied Science, Beijing University of Technology, Beijing 100022, China Received 30 March 2004; accepted 7 September 2004

Abstract

Lin raised the following open problem in 1995: If X is a strong Σ^* -space and every point of X is a G_{δ} -set of X, is X a strong Σ -space? In this paper, this problem is answered. The main conclusion is that if X is a strong Σ^* -space and every point of X is a G_{δ} -set of X, then X is a strong Σ -space. As a corollary, we have that a T_2 -space is a σ -space iff it is a Σ^* -space with a G_{δ} -diagonal. Some conditions that imply Σ^* -property are discussed. © 2004 Published by Elsevier B.V.

MSC: 54E20; 54E18

Keywords: Σ^* -space; Strong Σ^* -space; σ -discrete; k-space

Introduction

The properties of Σ -spaces, strong Σ -spaces, Σ^* -spaces and strong Σ^* -spaces have been studied by many topologists. Now, let us review these definitions. If \mathcal{K} is a cover of a space X, then a cover \mathcal{P} is called a (mod \mathcal{K})-network for X if, whenever $K \subset U$ with $K \in \mathcal{K}$ and U open in X, then $K \subset P \subset U$ for some $P \in \mathcal{P}$. A space X is a Σ -space (Σ^* -space) if it has a σ -locally finite (σ -hereditarily closure-preserving) closed (mod \mathcal{K})network for some cover \mathcal{K} of X by countably compact sets. In the definitions, if \mathcal{K} is a cover of X by compact sets, then X is called strong Σ -space (strong Σ^* -space) (cf. [1–4]). We know that a collection $\mathcal{P} = \{P_{\lambda}: \lambda \in A\}$ is hereditarily closure-preserving (abbreviated HCP) if for any collection $\{B_{\lambda}: \lambda \in A\}$ with $B_{\lambda} \subset P_{\lambda}$ is closure-preserving.

0166-8641/\$ – see front matter $\,$ © 2004 Published by Elsevier B.V. doi:10.1016/j.topol.2004.09.003

From these definitions we know that every strong Σ -space is a Σ -space, and every strong Σ^* -space is a Σ^* -space. In [2], Okugyama proved if X is a Σ^* -space for which every open set is an F_{σ} -set, then X is a Σ -space. In [3], it is proved that every T_2 strong Σ -space with a G_{δ} -diagonal is a σ -space. Thus Lin raised the following problem in [4] in 1995.

Problem [4]. If X is a strong Σ^* -space and every point of X is a G_{δ} -set of X, is X a strong Σ -space?

In this paper we give a positive answer to Lin's problem. This, together with Theorem 3.29 of the paper [3] implies that a Hausdorff space X is a σ -space if and only if it is a Σ^* -space with a G_{δ} -diagonal. We also discuss some conditions which imply Σ^* -property.

All spaces of the paper are T_1 -spaces, and all maps are continuous. Let N be the set of all natural numbers.

1. Some conditions which imply Σ^* -property

Lemma 1.1 [2]. *X* is a Σ -space iff *X* has a sequence $\{\mathcal{P}_n : n \in N\}$ of locally finite closed covers of *X* such that any sequence $\{x_n : n \in N\}$ with $x_n \in C(x, \mathcal{P}_n)$ for some $x \in X$ has a cluster point (where $C(x, \mathcal{P}_n) = \bigcap \{P : x \in P, P \in \mathcal{P}_n\}$).

Lemma 1.2 [2]. If X is a Σ^* -space, then X has a sequence $\{\mathcal{P}_n: n \in N\}$ of HCP closed covers of X, such that any sequence $\{x_n: n \in N\}$ with $x_n \in C(x, \mathcal{P}_n)$ for some $x \in X$ has a cluster point.

Lemma 1.3 [8]. If \mathcal{P} is a HCP family of X, then $\{P_1 \cap P_2 \cap \cdots \cap P_n : P_i \in \mathcal{P}, i \leq n\}$ is also a HCP family of X, $n \in N$.

For the sake of convenience, let us denote some items.

The condition (I): *X* has a sequence $\{\mathcal{P}_n : n \in N\}$ of HCP closed covers of *X* such that any sequence $\{x_n : n \in N\}$ with $x_n \in C(x, \mathcal{P}_n)$ for some $x \in X$ has a cluster point.

If $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in N\}$, \mathcal{P}_n is a family of subsets of $X, n \in N$. Let us denote $D_n = \{x: x \in X, \mathcal{P}_n \text{ is not point finite at } x\}$, $G_m = \{x: x \in X, |\bigcap \{P: x \in P, P \in \mathcal{P}_m\}| < \omega\}$, $C(x, \mathcal{P}_n) = \bigcap \{P: x \in P, P \in \mathcal{P}_n\}$ and $C(x, \mathcal{P}) = \bigcap \{C(x, \mathcal{P}_n): n \in N\}$.

One natural question is that whether the converse of Lemma 1.2 is true. Now let us discuss some properties of spaces which satisfy the condition (I). If X is a Σ^* -space, let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in N\}$ be the σ -HCP closed (mod \mathcal{K})-network for some cover \mathcal{K} of X by countably compact sets, then $D_n \subset G = \bigcup \{G_m : m \in N\}$ for each $n \in N$, and $D = \bigcup \{D_n : n \in N\}$ is a σ -discrete subset of X if and only if $G = \{G_m : m \in N\}$ is a σ -discrete subset of X (cf. [7]). Now, let us show that these conclusions are also true if X satisfies the condition (I).

Lemma 1.4. If X satisfies the condition (I), then $D_n \subset G = \bigcup \{G_m : m \in N\}$ for each $n \in N$.

Download English Version:

https://daneshyari.com/en/article/9516963

Download Persian Version:

https://daneshyari.com/article/9516963

Daneshyari.com