

Available online at www.sciencedirect.com

SCIENCE ()DIRECT

Applications

Topology

Topology and its Applications 146-147 (2005) 57-66

www.elsevier.com/locate/topol

Paracompactness and the Lindelöf property in countable products

Eriko Aoki a, Naoko Mori b, Hidenori Tanaka c,*

a Gojyo 9-15-601, Higashiosaka, Osaka 579-8042, Japan ^b Ichioka 1-3-11, Minatoku, Osaka 552-0012, Japan ^c Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan Received 21 August 2002; accepted 18 December 2002

Abstract

In this paper, we prove the following: Let Y be a perfect paracompact (hereditarily Lindelöf) space and $\{X_n: n \in \omega\}$ be a countable collection of Čech-scattered paracompact (Lindelöf) spaces, then the product $Y \times \prod_{n \in \omega} X_n$ is paracompact (Lindelöf). © 2004 Elsevier B.V. All rights reserved.

MSC: 54B10; 54D15; 54D20; 54G12

Keywords: Paracompact; Lindelöf; Čech-complete; Scattered; C-scattered; Čech-scattered

1. Introduction

Since the notion of C-scattered spaces was introduced by Telgársky [12], C-scattered spaces play the fundamental role in the study of paracompactness (Lindelöf property) of products. A space X is said to be scattered if every nonempty subset A has an isolated point in A, and X is said to be C-scattered if for every nonempty closed subset A of X, there is a point $x \in A$ which has a compact neighborhood in A. Then scattered spaces and locally compact spaces are C-scattered. R. Telgársky proved the following:

(A) (Telgársky [12]) If X is a C-scattered paracompact (Lindelöf) space, then $X \times Y$ is paracompact (Lindelöf) for every paracompact (Lindelöf) space Y.

E-mail addresses: cpalc128@hct.zaq.ne.jp (E. Aoki), naoko315@xmail.plala.or.jp (N. Mori), htanaka@cc.osaka-kyoiku.ac.jp (H. Tanaka).

Corresponding author.

Let \mathcal{L} be the class of all spaces whose product with every hereditarily Lindelöf space is Lindelöf. E. Michael asked whether \mathcal{L} is closed with respect to countable products. Alster [2,3] gave a negative answer to this problem and proved

(B) (Alster [1]) If $\{X_n : n \in \omega\}$ is a countable collection of C-scattered Lindelöf spaces, then the product $\prod_{n \in \omega} X_n \in \mathcal{L}$.

For paracompactness of countable products, we have

- (C) (Alster [4]) If Y is a perfect paracompact space and $\{X_n: n \in \omega\}$ is a countable collection of scattered paracompact spaces, then the product $Y \times \prod_{n \in \omega} X_n$ is paracompact.
- (D) (Friedler et al. [7], Hohti and Pelant [8]) If $\{X_n: n \in \omega\}$ is a countable collection of C-scattered paracompact spaces, then the product $\prod_{n \in \omega} X_n$ is paracompact.

Hohti and Ziqiu [9] introduced the notion of Čech-scattered spaces, which is a generalization of C-scattered spaces. A space X is said to be Čech-scattered if for every nonempty closed subset A of X, there is a point $x \in A$ which has a Čech-complete neighborhood in A. They proved

(E) (Hohti and Ziqui [9]) If $\{X_n: n \in \omega\}$ is a countable collection of Č-scattered paracompact spaces, then the product $\prod_{n \in \omega} X_n$ is paracompact.

It seems to be natural to consider the paracompactness (Lindelöf property) of product of a perfect paracompact (hereditarily Lindelöf) space and a product of countably many Čechscattered paracompact (Lindelöf) spaces. So, we prove analogous results of (B) and (C).

All spaces are assumed to be Tychonoff spaces. Let ω denote the set of natural numbers. Undefined terminology can be found in Engelking [5].

2. Preliminaries

Let X be a space. For a closed subset A of X, let

 $A^* = \{x \in A : x \text{ has no Čech complete neighborhood in } A\}.$

Let $A^{(0)} = A$, $A^{(\alpha+1)} = (A^{(\alpha)})^*$ and $A^{(\alpha)} = \bigcap_{\beta < \alpha} A^{(\beta)}$ for a limit ordinal α . Note that every $A^{(\alpha)}$ is a closed subset of X and if A and B are closed subsets of X such that $A \subset B$, then $A^{(\alpha)} \subset B^{(\alpha)}$ for each ordinal α . Furthermore, X is Čech-scattered if and only if $X^{(\alpha)} = \emptyset$ for some ordinal α . It is clear that if X is a Čech-scattered space and A is an open (closed) subset of X, then A is also Čech-scattered. A subset A of X is said to be topped if there is an ordinal $\alpha(A)$ such that $A^{(\alpha(A))}$ is nonempty and Čech-complete. For each $x \in X$, there is a unique ordinal α such that $x \in X^{(\alpha)} - X^{(\alpha+1)}$, which is denoted by $rank(x) = \alpha$. Then there is a neighborhood base \mathcal{B} of x in X, consisting of open subsets of X, such that for each $B \in \mathcal{B}$, cl B is topped in X and $\alpha(cl B) = rank(x)$.

The proofs of following lemmas are routine. So we omit them.

Lemma 2.1. (1) If X and Y are Čech-scattered spaces, then the product $X \times Y$ is Čech-scattered.

(2) Let X and Y be spaces and $f: X \to Y$ be a perfect mapping from X onto Y. Then X is Čech-scattered if and only if Y is Čech-scattered.

Download English Version:

https://daneshyari.com/en/article/9516973

Download Persian Version:

 $\underline{https://daneshyari.com/article/9516973}$

Daneshyari.com