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Abstract

Cappell’s codimension 1 splitting obstruction surgery group UNiln is a direct summand of the
Wall surgery obstruction group of an amalgamated free product. For any ring with involution
R we use the quadratic Poincaré cobordism formulation of theL-groups to prove that

Ln(R[x])= Ln(R)⊕ UNiln(R;R,R).

We combine this with Weiss’ universal chain bundle theory to produce almost complete calcu-
lations of UNil∗(Z;Z,Z) and the Wall surgery obstruction groupsL∗(Z[D∞]) of the infinite
dihedral groupD∞ = Z2 ∗ Z2.
© 2004 Elsevier Inc. All rights reserved.
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0. Introduction

The nilpotentK- and L-groups of rings are a rich source of algebraic invariants for
geometric topology, giving results of two types: if the groups are zero it is possible
to solve the associated splitting and classification problems, while if they are nonzero
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the groups are infinitely generated and the solutions to the problems are definitely
obstructed, see[2,4,6,8,9,10,11,16].
The unitary nilpotentL-groups UNil∗ arise as follows. Suppose given a closedn-

dimensional manifoldX which is expressed as a union of codimension 0 submanifolds
X1, X−1 ⊆ X

X = X1 ∪X−1

with

X0 = X1 ∩X−1 = �X−1 = �X1 ⊆ X

a codimension 1 submanifold. AssumeX,X−1, X0, X1 are connected, and that the maps
�1(X0)→ �1(X±1) are injective, so that by the van Kampen theorem the fundamental
group ofX is an amalgamated free product

�1(X) = �1(X1) ∗�1(X0) �1(X−1)

with �1(Xi) → �1(X) (i = −1,0,1) injective. Given another closedn-dimensional
manifoldM and a simple homotopy equivalencef : M → X there is a single obstruc-
tion

s(f ) ∈ UNiln+1(R;B1,B−1)

to deformingf by an h-cobordism of domains to a homotopy equivalence of the form

f1 ∪ f−1 : M1 ∪M−1 → X1 ∪X−1

with f±1 : (M±1, �M±1) → (X±1, �X±1) homotopy equivalences of manifolds with
boundary such that

f1| = f−1| : �M1 = �M−1→ �X1 = �X−1

and

R = Z[�1(X0)], B±1 = Z[�1(X±1)\�1(X0)].

Cappell [5,6] proved geometrically that the free Wall [21] surgery obstruction groups
L∗ = Lh∗ of the fundamental group ring

� = Z[�1(X)] = Z[�1(X1)] ∗Z[�1(X0)] Z[�1(X−1)]
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